СМЕСЕВОЕ СВЕТОЧУВСТВИТЕЛЬНОЕ ВЗРЫВЧАТОЕ ВЕЩЕСТВО ДЛЯ КАПСЮЛЯ ОПТИЧЕСКОГО ДЕТОНАТОРА Российский патент 2018 года по МПК C06B25/32 C06B33/08 C06C7/00 

Описание патента на изобретение RU2666435C1

Изобретение относится к области производства взрывчатых веществ (ВВ) для оптических детонаторов и может быть использовано для повышения безопасности работы устройств и снижения эксплуатационных требований к детонатру. Изобретение решает задачу поиска оптимального содержания наночастиц в капсюльном составе типа «бризантное взрывчатое вещество-наночастицы металла» на примере «пентаэритриттетранитрат-наночастицы железа», что позволяет достичь минимальных пороговых условий инициирования состава лазерным импульсным излучением.

В настоящее время в горнодобывающей промышленности актуально повышение надежности работы взрывных устройств, которое может быть достигнуто с использованием лазерного инициирования. Известен капсюль-детонатор и инициирующий состав (патент RU №2046275, МПК F42B 3/10, C06B 45/20, опубл. 20.10.1995). В качестве инициирующего состава используется вещество с компонентами, масс. %: азид свинца 80-85, тетранитрорезорционат свинца 7-8, пироксилиновый порох остальное.

Известен способ регулирования порога инициирования оптического детонатора (патент RU №2538263, МПК C06B 49/00, F42C 13/02, опубл. 10.01.2015) на основе азида серебра, позволяющий с помощью предварительного облучения варьировать чувствительность к лазерному воздействию.

Недостатком двух вышеперечисленных решений является использование высокочувствительных инициирующих взрывчатых веществ в качестве основных компонентов капсюльного состава.

Известен детонатор на основе светочувствительного взрывчатого вещества (патент на изобретение RU №2427786, МПК F42B 3/113, опубл. 27.08.2011), где смесевое светочувствительное ВВ выполнено в виде запрессованного до плотности 0,9÷1,1 г/см3 материала из смеси высокодисперсного пентаэриттетранитрата (ТЭН) с удельной поверхностью 4000÷20000 см2/г и наноалюминия со средним размером частиц не более 60 нм, при соотношении ингредиентов (массовые доли) от 75:15 до 95:5 соответственно. Недостатком является неоптимизированное содержание нанометалла в смесевом светочувствительном ВВ, использующемся в детонаторе.

Наиболее близким к заявляемому изобретению является капсюль-детонатор на основе светочувствительного взрывчатого вещества (патент на полезную модель RU №157624, МПК F42B 3/113, опубл. 10.12.2015), где ВВ представляет собой запрессованный до плотности 1,73 г/см3 ТЭН, содержащий 0,1 масс. % наночастиц кобальта.

Недостатком ближайшего аналога является неоптимизированное содержание нанометалла в смесевом светочувствительном ВВ, использующемся в детонаторе, которое не обеспечивает достижения наименьшего порога лазерного воздействия.

Задачей предлагаемого изобретения является снижение порога лазерного инициирования капсюльных составов типа «бризантное взрывчатое вещество-наночастицы металлов» путем оптимизации содержания в них нанометалла.

Поставленная задача решается получением смесевого светочувствительного ВВ для капсюля оптического детонатора. Смесевое светочувствительное ВВ содержит порошок ТЭНа с добавками наночастиц металла и выполнено в виде прессованных таблеток. В качестве наночастиц металла взято железо 0,15 и 0,4 масс. %.

На фиг. 1 изображены измеренные зависимости критической плотности энергии лазерного излучения первой (1064 нм, ○) и второй (532 нм, □) гармоник Nd:YAG лазера на поверхности светочувствительного взрывчатого вещества от массовой доли наночастиц железа.

Для получения смесевого светочувствительного ВВ в порошок ТЭНа добавляют наночастицы железа до получения нужной массовой доли (0,15 и 0,4 масс. %). Средний диаметр наночастиц железа составляет 75 нм. Смесь помещают в гексан и перемешивают в ультразвуковой ванне в течении 20 минут для получения равномерного распределения наночастиц в объеме смеси. После этого смесь сушат на воздухе до постоянной массы.

Для получения прессованных таблеток смесевое ВВ прессуют в отверстие диаметром 3 мм в центре медной пластины толщиной 1 мм до плотности 1,73±0.03 г/см3.

Для определения оптимального количества наночастиц железа в смесевом ВВ выполнили лазерное инициирование взрывного разложения полученных образцов. В качестве источника инициирования использовали первую (1064 нм) и вторую (532 нм) гармоники Nd:YAG лазера, работающего в режиме модулированной добротности с длительностью импульса 14 нс. Излучение фокусировали на образец с помощью линзы, при этом диаметр светового пятна составил 2,5 мм. Распределение интенсивности излучения по сечению лазерного пучка близко к прямоугольному. Стеклянную пластину с образцом помещали на алюминиевую подложку и накрывали со стороны лазерного луча пластиной из оптического стекла толщиной 2 мм. На конструкцию накладывали медную пластину с отверстием в центре диаметром 2 мм для ввода излучения, которая плотно прижимала стеклянную пластину к поверхности образца с помощью винтов. Использование такой схемы позволяет приблизить условия определения порога лазерного инициирования полученного смесевого ВВ к реализуемым в оптических детонаторах.

На фиг. 1 видно, что в зависимости от массовой доли наночастиц железа критическая плотность энергии инициирования взрыва импульсным излучением первой гармоники неодимового лазера изменяется в диапазоне 2,0÷0,5 Дж/см2 (○), а второй гармоники - в диапазоне 0,6÷2,3 Дж/см2 (□). Оптимальная массовая доля наночастиц железа в случае первой гармоники составляет 0,40 масс. %, а в случае второй - 0,15 масс. %. При этом значение критической плотности энергии инициирования взрыва составило 0,5 Дж/см2 и 0,6 Дж/см2 соответственно.

Благодаря уточнению природы и оптимальной массовой доли наночастиц металла в капсюльном составе типа «бризантное взрывчатое вещество-наночастицы металлов» критическая плотность энергии инициирования взрыва импульсным излучением полученного смесевого светочувствительного ВВ в три раза ниже, чем в случае ближайшего аналога (1,7 Дж/см2).

Похожие патенты RU2666435C1

название год авторы номер документа
МАЛОЧУВСТВИТЕЛЬНЫЙ ВЗРЫВЧАТЫЙ СОСТАВ ДЛЯ СНАРЯЖЕНИЯ ЭЛЕКТРОДЕТОНАТОРОВ 2012
  • Семашкин Георгий Владимирович
  • Душенок Сергей Адамович
  • Куликов Валерий Геннадьевич
  • Брагин Владислав Александрович
  • Савенков Георгий Георгиевич
  • Оськин Игорь Александрович
RU2496756C1
ДЕТОНАТОР НА ОСНОВЕ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА 2010
  • Калашникова Ольга Николаевна
  • Герман Валерий Николаевич
  • Мильченко Дмитрий Владимирович
  • Вахмистров Сергей Анатольевич
  • Фомичева Людмила Валентиновна
  • Калашников Николай Герасимович
RU2427786C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТОЙКИХ СВЕТОЧУВСТВИТЕЛЬНЫХ ВЗРЫВЧАТЫХ СОСТАВОВ И СВЕТОДЕТОНАТОР НА ИХ ОСНОВЕ 2017
  • Луковкин Олег Михайлович
  • Шейков Юрий Валентинович
  • Батьянов Сергей Михайлович
  • Вахмистров Сергей Анатольевич
  • Калашникова Ольга Николаевна
  • Мильченко Дмитрий Владимирович
RU2637016C1
УСТРОЙСТВО ОПТИЧЕСКОГО ИНИЦИИРОВАНИЯ 2022
  • Минин Игорь Владиленович
  • Минин Олег Владиленович
RU2794055C1
Лазерный капсюль-детонатор 2020
  • Аватитян Григорий Артемович
  • Агеев Михаил Васильевич
  • Бутенко Владимир Григорьевич
  • Ведерников Юрий Николаевич
  • Климова Анжела Александровна
  • Кулагин Юрий Александрович
  • Паршиков Юрий Григорьевич
  • Попов Владимир Кузьмич
RU2750750C1
ИНИЦИИРУЮЩИЙ СОСТАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2019
  • Баталов Сергей Валентинович
  • Агеев Михаил Васильевич
  • Ведерников Юрий Николаевич
  • Федотов Сергей Александрович
  • Смирнов Андрей Вячеславович
RU2729490C1
ШАШКА-ДЕТОНАТОР ДЛЯ ПРОМЫШЛЕННОГО ВЗРЫВАНИЯ 2012
  • Ерзиков Алексей Иванович
  • Карлов Максим Васильевич
  • Овян Александр Исаевич
RU2522534C1
ЭНЕРГОНАСЫЩЕННЫЙ СВЕТОЧУВСТВИТЕЛЬНЫЙ СОСТАВ ДЛЯ ЛАЗЕРНОЙ СИСТЕМЫ ИНИЦИИРОВАНИЯ 2001
  • Леоненко Н.А.
  • Павлова Н.А.
  • Кузьменко А.П.
  • Жуков Е.А.
RU2196122C2
ШАШКА-ДЕТОНАТОР (ВАРИАНТЫ) 2006
  • Старшинов Александр Васильевич
  • Ферафонтов Владимир Павлович
  • Ананьин Игорь Анатольевич
  • Глумов Александр Юрьевич
  • Казаков Анатолий Михайлович
  • Нейман Виктор Рихартович
RU2321821C2
НАГРУЖАЮЩЕЕ УСТРОЙСТВО 2023
  • Смирнов Евгений Борисович
  • Сарафанников Андрей Владимирович
  • Тарасов Александр Юрьевич
  • Просвирнин Кирилл Михайлович
  • Галиуллин Игорь Гаптильбариевич
RU2811130C1

Иллюстрации к изобретению RU 2 666 435 C1

Реферат патента 2018 года СМЕСЕВОЕ СВЕТОЧУВСТВИТЕЛЬНОЕ ВЗРЫВЧАТОЕ ВЕЩЕСТВО ДЛЯ КАПСЮЛЯ ОПТИЧЕСКОГО ДЕТОНАТОРА

Изобретение относится к производству взрывчатых веществ для оптических детонаторов и может быть использовано для повышения безопасности работы устройств и снижения требований к инициирующему лазерному устройству. Смесевое светочувствительное взрывчатое вещество содержит порошок пентаэриттетранитрата с добавками наночастиц металла и выполнено в виде прессованных таблеток. В качестве наночастиц металла взято железо 0,15 и 0,4 мас.%. Использование изобретения позволяет снизить порог лазерного инициирования капсюльных составов типа «бризантное взрывчатое вещество-наночастицы металлов». 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 666 435 C1

1. Смесевое светочувствительное взрывчатое вещество для капсюля оптического детонатора, включающее порошок ТЭНа с добавками наночастиц металла и выполненное в виде прессованных таблеток, отличающееся тем, что в качестве металла взято железо.

2. Вещество по п. 1, отличающееся тем, что наночастицы железа взяты в количестве 0,15 масс. %.

3. Вещество по п. 1, отличающееся тем, что наночастицы железа взяты в количестве 0,4 масс. %.

Документы, цитированные в отчете о поиске Патент 2018 года RU2666435C1

0
SU157624A1
ДЕТОНАТОР НА ОСНОВЕ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА 2010
  • Калашникова Ольга Николаевна
  • Герман Валерий Николаевич
  • Мильченко Дмитрий Владимирович
  • Вахмистров Сергей Анатольевич
  • Фомичева Людмила Валентиновна
  • Калашников Николай Герасимович
RU2427786C1
Электрическое устройство для автоматического поддержания в определенных границах давления в резервуаре с огнетушащей жидкостью 1928
  • Беликин И.П.
  • Кудинов И.Н.
SU15380A1
US 3876478 A, 08.04.1975
ДАНИЛЕНКО В.В
ВЗРЫВ: ФИЗИКА, ТЕХНИКА, ТЕХНОЛОГИЯ
М.: ЭНЕРГОАТОМИЗДАТ, 2010, с.5 64-565.

RU 2 666 435 C1

Авторы

Адуев Борис Петрович

Нурмухаметов Денис Рамильевич

Звеков Александр Андреевич

Лисков Игорь Юрьевич

Каленский Александр Васильевич

Даты

2018-09-07Публикация

2017-08-14Подача