Способ обнаружения резонансных колебаний ротора газотурбинного двигателя Российский патент 2018 года по МПК G01H13/00 

Описание патента на изобретение RU2668358C1

Изобретение относится к авиадвигателестроению и может быть использовано при диагностике колебаний вращающегося ротора газотурбинного двигателя (далее ГТД).

В качестве наиболее близкого аналога (прототипа) выбран способ обнаружения резонансных колебаний ротора ГТД (RU 2411466 С1).

Недостатком прототипа является отсутствие возможности определения резонансных колебаний вала ГТД.

Техническим результатом, достигаемым заявленным способом, является возможность определения резонансных колебаний вала ГТД при сохранении высокой достоверности и точности результатов.

Указанный технический результат достигается тем, что в известном способе обнаружения резонансных колебаний ротора газотурбинного двигателя, при котором устанавливают датчики на неподвижных частях турбомашины, запускают двигатель и равномерно увеличивают число оборотов исследуемого ротора, согласно настоящему изобретению, в качестве датчиков используют вибродатчики, которые устанавливают на наружном корпусе двигателя в одной плоскости взаимно ортогонально с точкой пересечения проекций осей датчиков на технологической оси двигателя, после запуска двигателя осуществляют регистрацию и обработку полученных вибросигналов путем их многоуровневой фильтрации с выделением рабочего поля частот ротора, затем проводят орбитальный анализ вибрации ротора в интервалах указанного поля по двум координатам, направление которых совпадает с направлениями осей датчиков с последующим построением графика орбиты вала исследуемого ротора, о наличии резонансных колебаний вала исследуемого ротора судят по повороту его орбиты на 180±50° с последующим восстановлением ее исходного положения при равномерном снижении числа оборотов исследуемого ротора.

Возможность определения резонансных колебаний вала ГТД, при сохранении высокой достоверности и точности результатов достигается за счет обнаружения поворота фазы механических колебаний ротора, возникающего на резонансе и регистрации поворота эллипса с помощью орбитального анализа вибрации.

Сущность настоящего изобретения поясняется следующими графическими изображениями:

На фигуре 1 изображена нормальная орбита ротора

На фигуре 2 изображена орбита ротора при возникновении резонанса

На фигуре 3 изображена орбита ротора поле возникновении резонанса Способ обнаружения резонансных колебаний ротора ГТД осуществляют следующим образом:

На наружном корпусе ГТД в одной плоскости взаимно ортогонально с точкой пересечения проекций осей датчиков на технологической оси ГТД устанавливают вибродатчики. Затем запускают ГТД и равномерно увеличивают число оборотов исследуемого ротора, одновременно с этим осуществляют регистрацию и обработку полученных вибросигналов путем их многоуровневой фильтрации с выделением рабочего поля частот ротора. Затем проводят орбитальный анализ вибрации ротора в интервалах указанного поля по двум координатам, направление которых совпадает с направлениями осей датчиков и строят график орбиты вала исследуемого ротора. О наличии резонансных колебаний вала исследуемого ротора судят по повороту его орбиты на 180±50° с последующим восстановлением ее исходного положения при равномерном снижении числа оборотов исследуемого ротора.

Пример осуществления способа резонансных колебаний ротора газотурбинного двигателя осуществляют следующим образом:

На наружном корпусе двигателя в одной плоскости взаимно ортогонально с точкой пересечения проекций осей датчиков на технологической оси ГТД устанавливают вибродатчики типа B&K 4513. Датчики подключаются к виброанализатору «Висом ВС 311», который подключается к компьютеру. Затем запускают ГТД и равномерно увеличивают число оборотов исследуемого ротора, одновременно с этим осуществляют регистрацию и обработку полученных вибросигналов путем их многоуровневой фильтрации с выделением рабочего поля частот ротора. Затем проводят орбитальный анализ вибрации ротора в интервалах указанного поля по двум координатам, направление которых совпадает с направлениями осей датчиков и строят график орбиты вала исследуемого ротора. После чего осуществляют анализ орбит вибрации, измеряя положение и отклонения орбиты. При повороте орбиты на 180±50° на одном из режимов работы с последующим восстановлением ее исходного положения при равномерном снижении числа оборотов исследуемого ротора делают вывод о наличии резонанса.

Пример 1:

На наружном корпусе ГТД в одной плоскости взаимно ортогонально с точкой пересечения проекций осей датчиков на технологической оси двигателя устанавливают вибродатчики типа B&K 4513. Датчики подключаются к виброанализатору «Висом ВС 311», который подключается к компьютеру. Затем запускают ГТД и равномерно увеличивают число оборотов исследуемого ротора, одновременно с этим осуществляют регистрацию и обработку полученных вибросигналов путем их многоуровневой фильтрации с выделением рабочего поля частот ротора в интервалах указанного поля. Затем проводят орбитальный анализ вибрации ротора по двум координатам, направление которых совпадает с направлениями осей датчиков и строят график орбиты вала исследуемого ротора. После чего осуществляют анализ орбит вибрации, измеряя положение и отклонения орбиты. При увеличении оборотов орбита изменяла свое положение не более чем на 25 градусов. Делается вывод о отсутствии резонанса.

Пример 2:

На наружном корпусе ГТД в одной плоскости взаимно ортогонально с точкой пересечения проекций осей датчиков на технологической оси двигателя устанавливают вибродатчики типа B&K 4513. Датчики подключаются к виброанализатору «Висом ВС 311», который подключается к компьютеру. Затем запускают ГТД и равномерно увеличивают число оборотов исследуемого ротора, одновременно с этим осуществляют регистрацию и обработку полученных вибросигналов путем их многоуровневой фильтрации с выделением рабочего поля частот ротора в интервалах указанного поля. Затем проводят орбитальный анализ вибрации ротора по двум координатам, направление которых совпадает с направлениями осей датчиков и строят график орбиты вала исследуемого ротора. После чего осуществляют анализ орбит вибрации, измеряя положение и отклонения орбиты. При увеличении оборотов орбита изменяла свое положение на 175 градусов на режиме работы 87% и сохраняла свое положение до максимального режима работы с изменениями не более чем на 15 градусов. После прохождения режима 87% в сторону уменьшения орбита восстановила свое первоначальное положение. При этом делается вывод о резонансе на 87% режиме работы двигателя.

Похожие патенты RU2668358C1

название год авторы номер документа
СПОСОБ ВИБРАЦИОННОЙ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДШИПНИКОВОЙ ОПОРЫ РОТОРА ДВУХВАЛЬНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2014
  • Герман Георгий Константинович
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
RU2551447C1
Способ определения динамического дисбаланса ротора авиационного газотурбинного двигателя 2016
  • Герман Георгий Константинович
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
RU2627750C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТОКОСЪЕМНИКОВ 2018
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
  • Мухин Андрей Николаевич
  • Мухина Светлана Дмитриевна
RU2682561C1
Способ повышения эффективности диагностики дисков авиационных газотурбинных двигателей 2016
  • Громов Алексей Николаевич
  • Панов Владимир Анатольевич
  • Страшелюк Вячеслав Алексеевич
  • Чистотин Владимир Петрович
RU2623856C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МЕЖВАЛЬНОГО ПОДШИПНИКА КАЧЕНИЯ ДВУХВАЛЬНОЙ ТУРБОМАШИНЫ 1995
  • Кузменко М.Л.
  • Коряковцев П.С.
  • Грязен Г.П.
  • Макаров В.П.
  • Кириевский Ю.Е.
RU2110781C1
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МЕЖРОТОРНОГО ПОДШИПНИКА ДВУХВАЛЬНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2014
  • Герман Георгий Константинович
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
RU2537669C1
Способ определения собственных частот и форм колебаний деталей сложной формы 2016
  • Герман Георгий Константинович
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
RU2623602C1
СПОСОБ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ДЕТАЛЕЙ, УЗЛОВ И ПРИВОДНЫХ АГРЕГАТОВ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ушаков Андрей Павлович
  • Тварадзе Сергей Викторович
  • Антонов Константин Викторович
  • Зотов Вадим Владимирович
  • Байков Александр Евгеньевич
RU2379645C2
УСТРОЙСТВО ДЛЯ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ МЕЖРОТОРНОГО ПОДШИПНИКА ДВУХВАЛЬНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2014
  • Герман Георгий Константинович
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
  • Костикова Екатерина Викторовна
  • Отрох Дмитрий Вячеславович
RU2552389C1
СПОСОБ ДИАГНОСТИКИ ТРАНСМИССИИ ДВУХВАЛЬНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Мельникова Нина Сергеевна
  • Добрянский Георгий Викторович
  • Потапов Алексей Юрьевич
RU2495395C1

Иллюстрации к изобретению RU 2 668 358 C1

Реферат патента 2018 года Способ обнаружения резонансных колебаний ротора газотурбинного двигателя

Изобретение относится метрологии, в частности к способам для вибрационной диагностики ротора газотурбинного двигателя. Согласно способу устанавливают датчики на неподвижных частях турбомашины, запускают двигатель и равномерно увеличивают число оборотов исследуемого ротора. При этом в качестве датчиков используют вибродатчики, которые устанавливают на наружном корпусе двигателя в одной плоскости взаимно ортогонально с точкой пересечения проекций осей датчиков на технологической оси двигателя, после запуска двигателя осуществляют регистрацию и обработку полученных вибросигналов путем их многоуровневой фильтрации с выделением рабочего поля частот ротора, затем проводят орбитальный анализ вибрации ротора в интервалах указанного поля по двум координатам, направление которых совпадает с направлениями осей датчиков, с последующим построением графика орбиты вала исследуемого ротора, о наличии резонансных колебаний вала исследуемого ротора судят по повороту его орбиты на 180±50° с последующим восстановлением ее исходного положения при равномерном снижении числа оборотов исследуемого ротора. Технический результат - высокая достоверность и точность измерений. 3 ил.

Формула изобретения RU 2 668 358 C1

Способ обнаружения резонансных колебаний ротора газотурбинного двигателя, при котором устанавливают датчики на неподвижных частях турбомашины, запускают двигатель и равномерно увеличивают число оборотов исследуемого ротора, отличающийся тем, что в качестве датчиков используют вибродатчики, которые устанавливают на наружном корпусе двигателя в одной плоскости взаимно ортогонально с точкой пересечения проекций осей датчиков на технологической оси двигателя, после запуска двигателя осуществляют регистрацию и обработку полученных вибросигналов путем их многоуровневой фильтрации с выделением рабочего поля частот ротора, затем проводят орбитальный анализ вибрации ротора в интервалах указанного поля по двум координатам, направление которых совпадает с направлениями осей датчиков, с последующим построением графика орбиты вала исследуемого ротора, о наличии резонансных колебаний вала исследуемого ротора судят по повороту его орбиты на 180±50° с последующим восстановлением ее исходного положения при равномерном снижении числа оборотов исследуемого ротора.

Документы, цитированные в отчете о поиске Патент 2018 года RU2668358C1

СПОСОБ ВИБРАЦИОННОЙ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ПОДШИПНИКОВОЙ ОПОРЫ РОТОРА ДВУХВАЛЬНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2014
  • Герман Георгий Константинович
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
RU2551447C1
Способ определения динамического дисбаланса ротора авиационного газотурбинного двигателя 2016
  • Герман Георгий Константинович
  • Зубко Алексей Игоревич
  • Зубко Игорь Олегович
RU2627750C1
Зубко А
И
ОЦЕНКА ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ОРБИТАЛЬНОГО АНАЛИЗА ВИБРАЦИИ ДЛЯ ИССЛЕДОВАНИЯ РОТОРНЫХ СИСТЕМ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ // Новые решения и технологии в газотурбостроении
М.: ЦИАМ, 2015
Способ получения бензонафтола 1920
  • Ильинский М.
SU363A1
ЗУБКО А.И
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
Устройство для извлечения срубленного леса с лесосеки 1921
  • Горохов Г.М.
SU531A1
WO 1999042240 A1, 26.08.1999
US 20160379387 A1, 29.12.2016
US 9063030 B2, 23.06.2015
US 20140230555 A1, 21.08.2014
US 20130326383 A1, 05.12.2013
Устройство для измерения расхода ксилемного потока растения 2020
  • Гиль Александр Тарасович
  • Плугатарь Юрий Владимирович
RU2746541C1
СПОСОБ ОБНАРУЖЕНИЯ РЕЗОНАНСНЫХ КОЛЕБАНИЙ ЛОПАТОК РОТОРА ТУРБОМАШИНЫ 2009
  • Фирсов Андрей Владимирович
  • Посадов Владимир Валентинович
RU2411466C1

RU 2 668 358 C1

Авторы

Герман Георгий Константинович

Зубко Алексей Игоревич

Зубко Игорь Олегович

Даты

2018-09-28Публикация

2017-11-17Подача