СПОСОБ ОТБОРА ПЛАСТОВОЙ ЖИДКОСТИ БЕЗ ВЫПУСКА УГЛЕВОДОРОДНОГО ГАЗА В АТМОСФЕРУ Российский патент 2018 года по МПК E21B49/08 G01N1/10 

Описание патента на изобретение RU2670293C1

Изобретение относится к газодобывающей промышленности, а именно к способу отбора проб жидкой фазы на устье газовых скважин без выпуска углеводородного газа в атмосферу.

При разработке газовых и газоконденсатных месторождений в течение времени происходит падение давления в скважинах, при этом начинается происходить водопроявление в скважинах. Для раннего определения возникновения водопроявления в скважинах и планированию мероприятий по ремонту скважин, периодичностью 1-2 раза в год или по мере необходимости, проводится отбор проб жидкой фазы на устье газовых и газоконденсатных скважин, на шлейфах и определения физико-химического состава жидкости. Определяется какие соли содержатся и преобладают в пластовой жидкости, ее плотность, pH (водородный показатель (щелочная или кислотная среда), что необходимо для предварительного определения, откуда поступает жидкость и есть ли вообще поступление жидкости.

Известен способ отбора пластовой жидкости с помощью каплеотделителя универсального газового малогабаритного (УГМК) с выпуском углеводородного газа в атмосферу. Каплеотделитель состоит из корпуса с крышкой, завихрителя, отбойника, патрубка эжектирующего, термокармана с термометром. Сверху к крышке крепится штуцер, клапан игольчатый, диафрагма, ниппель. Давление газа в корпусе и перед диафрагмой измеряется манометром. Слив жидкой фазы производится клапаном. Еще один клапан служит для проверки наполнения корпуса жидкостью. Каплеотделитель устанавливают на устройство отбора проб трубопровода скважины и пропускают через него газ в течение 10-300 минут, в зависимости от концентрации жидкости в газе. Расход газа определяется по диаметру отверстия калиброванной диафрагмы, давления газа перед ней и температуры газа методом измерения расхода газа при критическом течении. Для оперативного определения расхода производят калибровку каплеотделителя с применением счетчика газа при различных диаметрах отверстия шайбы и давлениях. После проведения цикла замера отсекают каплеотделитель от трубопровода, сливают жидкость и отправляют ее для измерения ее объема и исследования состава. По количеству жидкости, отнесенной к единице объема, пропущенного через каплеотделитель газа, и по составу жидкости определяют характеристики газа. CM.tyumenniigiprogaz.gazprom.ru

К недостаткам способа-аналога можно отнести потери углеводородного сырья и достаточно продолжительное время необходимое для отбора жидкости при котором происходит загидрачивание выпускного клапана из-за резкого перепада давления (эффект Джоуля-Томса).

Наиболее близким аналогом - прототипом, по способу отбора пластовой жидкости по отношению к заявляемому изобретению, является способ отбора пластовой жидкости с помощью коллектора «Надым-2 М» [См. tyumenniigiprogaz.gazprom.ru]. Отбор пластовой жидкости осуществляют следующим образом: Коллектор «Надым» при помощи дополнительных рукавов высокого давления подсоединяют к вентилям на входе и выходе нестандартного сужающего устройства на линии газовой или газоконденсатной скважины, часть газа которой в течение заданного промежутка времени пропускают через коллектор. Коллекторы «Надым» предназначены для проведения специальных газодинамических исследований газовых скважин как без выпуска газа в атмосферу (Коллекторы «Надым-2.2М»), так и с выпуском газа, определения технологических параметров в процессе их эксплуатации на любой стадии разработки с замером количественного содержания механических примесей и жидкостей, выносимых из призабойной зоны пласта, а также замера расхода осушенного газа. При использовании коллектора Надым в кусте газовых скважин избезать выпуска газа в атмосферу не удается.

К недостаткам прототипа можно отнести низкие технологические возможности, связанные с тем, что коллектор «Надым-2 М» стационарный, имеет высокую металлоемкость. Коллектор Надым не целесообразно использовать при отборе проб на одной скважине, поскольку это требует остановки работы других скважин, находящихся в кусте, что соответственно приводит к потерям добычи газа (для каждого куста газовых скважин требуется индивидуальный подход в связи с разным количеством скважин и различными термобарическими параметрами их). Коллектор «Надым-2 М» может работать только в теплый период времени, а результаты исследований необходимо проводить круглогодично. Для установки коллектора «Надым-2 М» на каждый куст газовых скважинах потребуется значительные капиталовложения и разрешительная документация.

Техническим результатом предполагаемого изобретения является устранение недостатков способа-прототипа в частности повышение технологических возможностей способа, заключающихся в снижении капиталовложений и сокращение времени проведения отбора пластовой жидкости, а также предотвращение потерь углеводородного сырья при проведении отбора пластовой жидкости при отборе проб из скважины в кусте.

Поставленный технический результат достигается использованием сочетания общих с прототипом известных признаков, заключающихся в том, что в способе отбора пластовой жидкости без выпуска углеводородного газа в атмосферу газожидкостную смесь скважины пропускают через средство отделения жидкости и примесей от газовой составляющей в течение заданного промежутка времени и новых признаков, заключающихся в том, что перед сужающимся устройством, смонтированном на технологической линии газовой скважины при помощи рукава высокого давления осуществляют отбор части потока газожидкостной смеси, проходящей по технологической линии скважины, после чего эту часть потока смеси пропускают через каплеотбойник, в котором пластовую жидкость, находящуюся в смеси, отделяют, а газовую составляющую вновь возвращают в технологическую линию при помощи рукава высокого давления, выход которого монтируют за сужающимся устройством.

Отбор части потока газожидкостной смеси, проходящей по технологической линии скважины и ее пропуск через каплеотделитель осуществляют в течение 10,0-ти - 300,0 мин в зависимости от концентрации жидкости в газе.

Новизной предложенного способ отбора пластовой жидкости без выпуска углеводородного газа в атмосферу является монтаж перед сужающимся устройством, смонтированном на технологической линии газовой или газожидкостной скважины, рукава высокого давления при помощи которого осуществляют отбор части потока газожидкостной смеси, проходящей по технологической линии скважины, после чего эту часть потока смеси пропускают через каплеотбойник, в котором пластовую жидкость, находящуюся в смеси, отделяют, а газовую составляющую вновь возвращают в технологическую линию при помощи рукава высокого давления, выход которого монтируют за сужающимся устройством.

Так, монтаж перед сужающимся устройством, смонтированном на технологической линии газовой скважины, рукава высокого давления позволяет отбирать газожидкостную смесь (смесь газа и пластовой жидкости) под более высоким давлением какое и есть в технологической линии, а монтаж рукава высокого давления за сужающимся устройством, возвращающим газовую составляющую в технологическую линию обеспечивает беспрепятственный возврат газовой составляющей в технологическую линию, в которой за сужающимся устройством давление ниже чем перед ним.

Пропуск части потока смеси через каплеотбойник, в котором пластовую жидкость, находящуюся в смеси, отделяют позволяет осуществить достаточно полное отделение пластовой жидкости от потока и позволяет сделать правдоподобную оценку и выводы по содержанию жидкости в газоконденсатной смеси.

Согласно проведенных патентно-информационных исследований сочетания предложенных известных и новых признаков предполагаемого изобретения в патентной и научно-технической литературе - не обнаружено, что позволяет отнести такое сочетание признаков к обладающим новизной.

В связи с тем, что предложенное сочетание признаков не известно из существующего уровня техники и позволяет получить более высокий технический результат, то предлагаемые существенные признаки можно признать соответствующими критерию - изобретательский уровень.

Описание осуществления предлагаемого способа и проведенные опытные на предприятии работы позволяют отнести его к промышленно выполнимым.

На чертеже схематично представлена монтажная схема устройства, обеспечивающего осуществление предлагаемого способа.

Устройство, при помощи которого осуществляется предлагаемый способ, состоит из технологической линии 1, на которой смонтировано сужающееся устройство 2. Перед сужающимся устройством 2 выполнена врезка штуцера 3, на котором закреплен вентиль 4 и рукав 5 высокого давления, обеспечивающий отбор части потока газожидкостной смеси, проходящей по трубопроводу технологической линии 1. Каплеотделитель 6 с одной стороны соединен с рукавом 5, а с другой стороны с рукавом 7 высокого давления, выход которого связан с вентилем 8 и со штуцером 9, смонтированном на технологической линии 1 за сужающимся устройством 2. Вентиль 10 предназначен для слива жидкости из каплеотделителя 6. Стрелкой А показано направление движения потока газожидкостной смеси в технологической линии 1.

Предлагаемый способ осуществляется следующим образом:

Для отбора пробы жидкой фазы на технологической линии газовой скважины без выпуска углеводородного сырья (газа) в атмосферу, перед установленным сужающим устройством 2 открываю вентиль 4, обеспечивая подачу части газожидкостной смеси через рукав высокого давления 5 к каплеотделителю 6. В каплеотделителе 6 жидкость отделяют от газовой составляющей и последнюю по рукаву высокого давления 7 возвращают в технологическую линию 1. По окончании заданного промежутка времени прокачки части газожидкостной смеси через каплеотделитель 6 вентили 4 и 8 закрывают а скопившуюся в корпусе каплеотделителя 6 влагу сливают при помощи вентиля 10 в технологическую емкость. По количеству жидкости, отнесенной к единице объема, пропущенного через каплеотделитель смеси, и по составу жидкости определяют характеристики газа. Далее пластовая жидкость сливают в транспортную емкость (бутыль). Пробу маркируют и отправляют в химико-аналитическую лабораторию.

Достижение технического результата, поставленного предполагаемым изобретением оценивают с помощью времени, затраченного на проведение операции по отбору пластовой жидкости.

Конкретный пример осуществления предлагаемого способа.

В июне 2017 года на предприятии ООО «Газпром добыча Ноябрьск», на газовой скважине №14 были проведены испытания предлагаемого способа. Для этого на технологической линии осуществили монтаж необходимого оборудования, к штуцерам подсоединили рукава высокого давления, к рукавам присоединили каплеотделитель. При стабильной скорости потока смеси в технологической линии 1 равной 4,3 м/с после продувки лини газом в течение двух минут, без внесения в скважину химических реагентов во время работы скважины приступили к отбору пластовой жидкости - к осуществлению предлагаемого способа. Для этого вентили 4 и 8 открыли и начали пропускать через каплеотделитель 6 часть газожидкостной смеси по рукаву высокого давления 5 от трубопровода до сужающего устройства и ввода газовой составляющей в трубопровод технологической линии за сужающим устройством 2 по рукаву высокого давления 7. Прокачку части газожидкостной смеси осуществляли в течение 5-ти минут в результате чего в каплеотделителе скопилось пластовой жидкости 0,72 л. Жидкость слили в бутыль и направили в лабораторию.

Использование предлагаемого способа сократило время проведения отбора проб с получением необходимых данных по качественному составу газожидкостной смеси проходящей по технологической линии в момент проведения отбора. Кроме сокращения времени на отбор проб снизились трудозатраты на монтаж необходимого оборудования и на сам процесс осуществления отбора проб. При этом были устранены потери углеводородного сырья.

Отбор части потока газожидкостной смеси, проходящей по технологической линии скважины и ее пропуск через каплеотделитель осуществляющийся в течение 10,0-ти - 300,0 мин в зависимости от концентрации жидкости в газе позволяет значительно сократить время отбора проб без снижения качества отбора.

В настоящее время на предприятии проведены работы по отбору проб пластовой жидкости на различных по составу газожидкостных смесей. Получены положительные результаты испытаний. По окончании расширенных испытаний будет принято решении об использовании предлагаемого способа в производстве.

Похожие патенты RU2670293C1

название год авторы номер документа
УСТРОЙСТВО ОТБОРА УГЛЕВОДОРОДНОЙ ЖИДКОСТИ БЕЗ ВЫПУСКА ГАЗА В АТМОСФЕРУ 2020
  • Рагимов Теймур Тельманович
  • Степанов Михаил Владимирович
  • Филиппов Андрей Николаевич
  • Махнанов Павел Валерьевич
  • Блащук Дмитрий Владимирович
RU2755104C1
УСТАНОВКА ДЛЯ ОТБОРА ПРОБ ЖИДКОСТИ ИЗ ТРУБОПРОВОДА 2020
  • Полозов Владимир Николаевич
  • Щёголев Дмитрий Павлович
  • Усманов Азамат Борисович
  • Полянский Андрей Викторович
  • Балаев Андрей Витальевич
  • Ильин Алексей Владимирович
  • Хасбутдинов Руслан Масхутович
  • Иванов Антон Владимирович
  • Ульянов Владимир Владимирович
  • Милашов Евгений Анатольевич
  • Червяков Максим Владимирович
RU2754143C1
Установка для измерения дебита продукции газоконденсатных скважин 2017
  • Ахлямов Марат Наильевич
  • Ахмадеев Камиль Хакимович
  • Нигматов Руслан Робертович
  • Филиппов Дмитрий Анатольевич
  • Зиннатуллин Ленар Радисович
  • Урезков Михаил Федорович
  • Сухов Роман Дмитриевич
RU2655866C1
СПОСОБ ОПРЕДЕЛЕНИЯ УДЕЛЬНОГО И ОБЩЕГО КОЛИЧЕСТВА ЖИДКОЙ ВОДНОЙ ФАЗЫ, ПОСТУПАЮЩЕЙ ИЗ СКВАЖИНЫ В ПРОМЫСЛОВЫЙ ГАЗОСБОРНЫЙ КОЛЛЕКТОР 2010
  • Дудов Александр Николаевич
  • Ставицкий Вячеслав Алексеевич
  • Абдуллаев Ровшан Вазир Оглы
  • Митницкий Роман Александрович
  • Истомин Владимир Александрович
RU2460879C2
УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ДЕБИТОВ ПРОДУКЦИИ ГАЗОКОНДЕНСАТНЫХ И НЕФТЯНЫХ СКВАЖИН И СПОСОБ ЕЁ РАБОТЫ 2022
  • Сутормин Дмитрий Викторович
  • Каширин Дмитрий Викторович
RU2799684C1
СПОСОБ И УСТАНОВКА ДЛЯ ИЗМЕРЕНИЯ ДЕБИТОВ ПРОДУКЦИИ ГАЗОКОНДЕНСАТНЫХ И НЕФТЯНЫХ СКВАЖИН 2013
  • Обух Юрий Владимирович
RU2532490C1
СПОСОБ ГАЗОДИНАМИЧЕСКОГО ИССЛЕДОВАНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1990
  • Середа М.Н.
  • Облеков Г.И.
  • Баранов А.В.
  • Немировский И.С.
  • Нелепченко В.М.
  • Туголуков В.А.
  • Михайлов Н.В.
RU2070289C1
Установка мобильная для исследования и освоения скважин 2016
  • Корытников Роман Владимирович
  • Уфимцев Евгений Георгиевич
  • Овсянников Илья Сергеевич
  • Тарасов Дмитрий Ефимович
RU2675815C2
СПОСОБ ОПЕРАТИВНОГО ОПРЕДЕЛЕНИЯ ОБЪЕМНОГО СОДЕРЖАНИЯ ЖИДКОЙ ФАЗЫ В ГАЗОЖИДКОСТНОМ ПОТОКЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Вышиваный Иван Григорьевич
  • Москалев Игорь Николаевич
  • Седаков Андрей Юлиевич
RU2445581C1
СПОСОБ ЭКСПЛУАТАЦИИ НИЗКОПРОДУКТИВНЫХ ОБВОДНЕННЫХ ГАЗОКОНДЕНСАТНЫХ СКВАЖИН 2011
  • Кононов Алексей Викторович
  • Кувандыков Ильис Шарифович
  • Степовой Константин Владимирович
  • Гурьянов Валерий Владимирович
  • Олейников Олег Александрович
RU2463440C1

Иллюстрации к изобретению RU 2 670 293 C1

Реферат патента 2018 года СПОСОБ ОТБОРА ПЛАСТОВОЙ ЖИДКОСТИ БЕЗ ВЫПУСКА УГЛЕВОДОРОДНОГО ГАЗА В АТМОСФЕРУ

Изобретение относится к газодобывающей промышленности, а именно к способу отбора проб жидкой фазы на устье газовых скважин без выпуска углеводородного газа в атмосферу. В способе отбора пластовой жидкости без выпуска углеводородного газа в атмосферу газожидкостную смесь скважины пропускают через средство отделения жидкости и примесей от газовой составляющей в течение заданного промежутка времени. Перед сужающимся устройством, смонтированным на технологической линии газовой скважины, при помощи рукава высокого давления осуществляют отбор части потока газожидкостной смеси, проходящей по технологической линии скважины, после чего эту часть потока смеси пропускают через каплеотбойник, в котором пластовую жидкость, находящуюся в смеси, отделяют, а газовую составляющую вновь возвращают в технологическую линию. Использование предлагаемого способа сокращает время проведения отбора проб, снижает трудозатраты на монтаж необходимого оборудования и на сам процесс осуществления отбора проб, устраняются потери углеводородного сырья. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 670 293 C1

1. Способ отбора пластовой жидкости без выпуска углеводородного газа в атмосферу, включающий пропуск газоконденсатной смеси скважины через средство отделения жидкости и примесей от газовой составляющей в течение заданного промежутка времени, отличающийся тем, что перед сужающимся устройством, смонтированным на технологической линии газовой или газоконденсатной скважины, при помощи рукава высокого давления осуществляют отбор части потока газоконденсатной смеси, проходящей по технологической линии скважины, после чего эту часть потока смеси пропускают через каплеотделитель, в котором пластовую жидкость, находящуюся в смеси, отделяют, а газовую составляющую вновь возвращают в технологическую линию при помощи рукава высокого давления, выход которого монтируют за сужающимся устройством.

2. Способ по п. 1, отличающийся тем, что отбор части потока газоконденсатной смеси, проходящей по технологической линии скважины, и ее пропуск через каплеотделитель осуществляют в течение 10,0 – 300,0 мин в зависимости от концентрации жидкости в газе.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670293C1

ПРОБООТБОРНИК И СПОСОБ ОТБОРА ПРОБ ЖИДКОСТИ 1998
  • Зайнуллин В.Ф.
  • Ермилов О.М.
  • Облеков Г.И.
  • Березняков А.И.
  • Забелина Л.С.
  • Дегтярев Э.А.
  • Зайнуллина Л.Ш.
  • Кононов В.И.
RU2157889C2
ПРОБООТБОРНИК ДЛЯ ИССЛЕДОВАНИЯ ГАЗОКОНДЕНСАТНЫХ СКВАЖИН 1999
  • Седых А.Д.
  • Кирьяшкин В.М.
  • Ильченко В.П.
RU2172835C2
ПРОБООТБОРНИК НАКОПИТЕЛЬНЫЙ 2006
  • Мусин Камиль Мугаммарович
  • Шайхутдинов Марс Якупович
  • Салахов Линар Тагирович
  • Страхов Дмитрий Витальевич
  • Зиятдинов Радик Зяузятович
  • Оснос Владимир Борисович
RU2305770C1
Устройство для отбора проб водорастворимых природных газов 1983
  • Колесников Евгений Михайлович
SU1111056A1
СПОСОБ ОТБОРА ПРОБ ЖИДКОСТИ ИЗ ТРУБОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Вальшин Р.Р.
  • Немиров М.С.
  • Шарипов Ф.М.
RU2202775C2
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1

RU 2 670 293 C1

Авторы

Гора Дмитрий Юрьевич

Бучельников Сергей Владимирович

Винник Дмитрий Владимирович

Урусов Юрий Александрович

Осипов Иван Вячеславович

Даты

2018-10-22Публикация

2017-08-15Подача