СПОСОБ УВЕЛИЧЕНИЯ ПОДЪЕМНОЙ СИЛЫ КРЫЛА ЛЕТАТЕЛЬНОГО АППАРАТА ОТ РЕАКТИВНОЙ ТЯГИ ДВУХКОНТУРНЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЕЙ (ТРДД) СО СТЕПЕНЬЮ КОНТУРНОСТИ БОЛЕЕ 2 И ЛЕТАТЕЛЬНЫЕ АППАРАТЫ С ИСПОЛЬЗОВАНИЕМ ДАННОГО СПОСОБА (ВАРИАНТЫ) Российский патент 2018 года по МПК B64C15/02 B64D27/20 

Описание патента на изобретение RU2670357C1

Изобретение относится к области авиации, в частности к самолетам с реактивными двигателями, как горизонтального взлета и посадки, так с укороченным либо вертикальным взлетом и посадкой.

Основными способами создания подъемной силы крыла самолета для конкретного типа самолета являются оптимальная силовая установка, оптимальное место установки силовой установки, оптимальная конфигурация крыла и элементов механизации крыла: предкрылков, закрылков, законцовок крыла и других устройств, а также управление пограничным слоем и использование реактивных закрылков.

Наиболее заметным представителем оптимального сочетания использованных технических решений для улучшения летных характеристик самолета является самолет Ан-70 (Крылья Родины, 1994 г., N 8, с. 7-9). С точки зрения создания подъемной силы самолета, на данном самолете использован обдув большей части верхней и нижней поверхности крыла мощными струями от турбовинтовых двигателей Д-27, которые установлены в передней части крыльев. За счет данного фактора в сочетании с развитой механизацией крыла вдвое увеличена подъемная сила крыла. Целью настоящего изобретения является использование обдува верхней и нижней части крыла набегающим потоком от реактивной струи более мощных двухконтурных турбореактивных двигателей со степенью контурности более 2, для увеличения подъемной силы крыла летательного аппарата.

Известны также технические решения летательных аппаратов с возможностью вертикального взлета и посадки с использованием истекающей реактивной струи двигателей по периметру кольцевого либо кругового крыла с изменением вектора тяги (патент РФ N 2005660, автор Братин С.Ф., опубл., 15.01.1994 г., патент РФ N 2406650, автор Андреев Ю.П., опубл., 20.12.2010 г., патент РФ N 2491206, автор Ансеров Д.О., Ансеров А.Д., опубл., 20.05.2013 г.). При многих компоновочных и конструктивных недостатках перечисленных технических решений следует отметить рациональность использования истекающей реактивной струи двигателей по верхней и нижней поверхностям крыла по периметру летательного аппарата для создания суммарного уравновешенного реактивного момента относительно центра тяжести летательного аппарата с максимальным эксцентриситетом в размере радиуса кольцевого либо кругового крыла в режиме вертикального подъема, зависания и посадки.

Предлагается способ создания подъемной силы крыла реактивного самолета от реактивной тяги одного или нескольких реактивных двигателей, для этого носок крыла летательного аппарата располагают в области набегающего потока истекающей струи из одного либо нескольких двухконтурных реактивных двигателей (ТРДД) со степенью контурности более 2, при этом набегающий поток истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 направляют по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла, при этом соотношение объема набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла летательного аппарата составляет от 30%: 70% до 10%: 90%, при этом выхлопную часть сопла одного либо нескольких двигателей ТРДД со степенью контурности более 2 располагают на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя. Для осуществления заявленного способа создания подъемной силы крыла предложен реактивный самолет с горизонтальным взлетом и посадкой, включающий фюзеляж, крылья с элементами механизации для изменения профиля крыла, двигатели ТРДД, кабину управления, интегральную систему управления, при этом двигатели ТРДД закреплены на фюзеляже либо на горизонтальных консолях фюзеляжа, при этом крылья с элементами механизации для изменения профиля крыла расположены за двигателями ТРДД со степенью контурности более 2 по ходу полета, при этом носки крыльев с элементами механизации для изменения профиля крыла расположены в области набегающего потока истекающей струи из двигателей ТРДД со степенью контурности более 2 при соблюдении соотношения объема набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла одного либо нескольких двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя. Для осуществления заявленного способа создания подъемной силы крыла также предложен реактивный самолет, с укороченным либо вертикальным взлетом и посадкой, включающий фюзеляж, крылья с элементами механизации для изменения профиля крыла, двигатели ТРДД, кабину управления, интегральную систему управления, при этом двигатели ТРДД закреплены на фюзеляже либо на горизонтальных консолях фюзеляжа, при этом участки крыльев с элементами механизации для изменения профиля крыла расположены в области набегающего потока истекающей струи из двигателей ТРДД со степенью контурности более 2, при соблюдении соотношения объема набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2, по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла одного либо нескольких двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя, при этом для возможности создания устойчивого суммарного уравновешенного силового реактивного момента относительно центра тяжести самолета в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия вертикальных реактивных моментов от одиночных либо групп двигателей ТРДД со степенью контурности более 2 направлены как минимум в трех направлениях. При этом для реактивного самолета с реактивной тягой, с укороченным либо вертикальным взлетом и посадкой, два или более двигателей ТРДД со степенью контурности более 2 могут быть выполнены с возможностью поворота вокруг вертикальной оси, при этом участки крыльев с элементами механизации для изменения профиля крыла могут быть выполнены в виде замкнутого кругового крыла, либо в виде круговых сегментов крыла вокруг поворотных двигателей ТРДД и располагаются в области набегающего потока истекающей струи из поворотных реактивных двигателей.

Краткое описание чертежей. На иллюстрационных примерах данного изобретения показаны варианты исполнения реактивных летательных аппаратов для реализации предлагаемого способа создания подъемной силы крыла реактивного самолета:

на фиг. 1 - сечение A1-А1, показана схема обдува крыла самолета с элементами механизации для изменения профиля крыла высокоскоростным набегающим потоком истекающей струи из двигателя ТРДД со степенью контурности более 2, а также набегающим встречным потоком атмосферного воздуха в момент взлета самолета, при этом крыло с элементами механизации для изменения профиля крыла расположено за двигателем ТРДД со степенью контурности более 2 по ходу полета, при этом носок крыла с элементами механизации для изменения профиля крыла расположено в области набегающего потока истекающей струи из двигателя ТРДД со степенью контурности более 2, при этом соотношение объема набегающего потока истекающей струи из сопла двигателя ТРДД со степенью контурности более 2 по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателя ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя;

на фиг. 2 - сечение А2-А2, показана схема обдува крыла самолета с элементами механизации для изменения профиля крыла набегающим высокоскоростным потоком истекающей струи из двигателя ТРДД со степенью контурности более 2, а также набегающим встречным потоком атмосферного воздуха в момент разгона самолета и набора высоты;

на фиг. 3 - сечение A3-A3, показана схема обдува крыла самолета с элементами механизации для изменения профиля крыла высокоскоростным набегающим потоком истекающей струи из двигателя ТРДД со степенью контурности более 2, а также набегающим встречным потоком атмосферного воздуха при горизонтальном крейсерском полете;

на фиг. 4 - сечение B1-В1, показана схема обдува крыла либо крыльев самолета с элементами механизации для изменения профиля крыла в нескольких направлениях, неменее трех, для реактивного самолета с укороченным либо вертикальным взлетом и посадкой высокоскоростным набегающим потоком истекающей струи из двигателя ТРДД со степенью контурности более 2, в момент вертикального взлета, зависания и посадки, при этом носок крыла с элементами механизации для изменения профиля крыла расположен в области высокоскоростного набегающего потока истекающей струи из двигателя ТРДД со степенью контурности более 2, при этом соотношение объема высокоскоростного набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателя ТРДЦ со степенью контурности более 2 располагается на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя;

на фиг. 5 компоновочная схема реактивного самолета с горизонтальным взлетом и посадкой, в плане, с сигарообразной формой фюзеляжа, с двумя двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях в передней части фюзеляжа и одним двигателем ТРДД с со степенью контурности более 2, например турбовентиляторным двигателем со смешением потоков, размещенным в хвостовой части фюзеляжа, при этом боковые линейные крылья с элементами механизации для изменения профиля крыла расположены за передними двигателями ТРДД по ходу полета, а за двигателем ТРДД в хвостовой части фюзеляжа предусмотрено трапециевидное крыло, при этом носки всех крыльев с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД при соблюдении соотношения объема набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном длине 2/3 хорды крыла вдоль оси реактивного двигателя.

на фиг. 6 - компоновочная схема самолета с горизонтальным взлетом и посадкой, в плане, с сигарообразной формой фюзеляжа, с четырьмя двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях в передней части фюзеляжа и одним двигателем ТРДД с со степенью контурности более 2, например турбовентиляторным двигателем со смешением потоков, размещенным в хвостовой части фюзеляжа, при этом боковые линейные крылья с элементами механизации для изменения профиля крыла расположены за передними двигателями ТРДД по ходу полета, а за двигателем ТРДД в хвостовой части фюзеляжа предусмотрено трапециевидное крыло, при этом носки всех крыльев с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД при соблюдении соотношения объема набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном длине 2/3 хорды крыла вдоль оси реактивного двигателя.

на фиг. 7 - компоновочная схема самолета с горизонтальным взлетом и посадкой, в плане, с сигарообразной формой фюзеляжа, с четырьмя двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях в передней части фюзеляжа и четырьмя двигателями ТРДД с со степенью контурности более 2, например турбовентиляторным двигателем со смешением потоков, размещенными на горизонтальных консолях в хвостовой части фюзеляжа, при этом боковые линейные крылья с элементами механизации для изменения профиля крыла расположены за передними и за задними двигателями ТРДД по ходу полета, при этом носки всех крыльев с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД при соблюдении соотношения объема набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном длине 2/3 хорды крыла вдоль оси реактивного двигателя;

на фиг. 8 - в режиме вертикального взлета, зависания и посадки показана компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой в плане с сигарообразной формой фюзеляжа, с двумя поворотными двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях с поворотной платформой для возможности совместного поворота двух передних ТРДД и участков передних сегментных трапециевидных крыльев, в передней части фюзеляжа и одним двигателем ТРДД с со степенью контурности более 2, например турбовентиляторным двигателем со смешением потоков, размещенным в хвостовой части фюзеляжа, при этом за двигателем ТРДД в хвостовой части фюзеляжа предусмотрено трапециевидное крыло, при этом носки всех крыльев с элементами механизации для изменения профиля крыла расположены в створе высокоскоростного набегающего потока истекающей струи из двигателей ТРДД, при этом соотношение объема набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном 2/3 длине хорды крыла вдоль оси реактивного двигателя, при этом в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия вертикальных реактивных моментов от одиночных двигателей ТРДД направлены в трех направлениях;

на фиг. 9 - компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой, в плане, по фиг. 7, при положении двигателей ТРДД и крыльев в режиме горизонтального крейсерского полета;

на фиг. 10 - в режиме вертикального взлета, зависания и посадки показана компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой в плане с сигарообразной формой фюзеляжа, с двумя поворотными двигателями ТРДД со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях с поворотной платформой в передней части фюзеляжа, и двумя двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях в хвостовой части фюзеляжа, при этом вокруг двух передних ТРДД предусмотрены круговые сегментные крылья, при этом боковые линейные крылья с элементами механизации для изменения профиля крыла расположены за задними двигателями ТРДД по ходу полета, при этом носки всех крыльев с элементами механизации для изменения профиля крыла расположены в области набегающего высокоскоростного потока истекающей струи из двигателей ТРДД, при этом соотношение объема набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном 2/3 длине хорды крыла вдоль оси реактивного двигателя, при этом в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия вертикальных реактивных моментов от одиночных двигателей ТРДД направлены в трех направлениях;

на фиг. 11 - компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой, в плане, по фиг. 10, при положении двигателей ТРДД в режиме горизонтального крейсерского полета;

на фиг. 12 - в режиме вертикального взлета, зависания и посадки показана компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой в плане с сигарообразной формой фюзеляжа, с двумя поворотными двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях с поворотной платформой в передней части фюзеляжа и одним двигателем ТРДД с со степенью контурности более 2, например турбовентиляторным двигателем со смешением потоков, размещенным в хвостовой части фюзеляжа, при этом вокруг двух передних ТРДД предусмотрены круговые сегментные крылья, а за двигателем ТРДД в хвостовой части фюзеляжа предусмотрено трапециевидное крыло, при этом носки всех крыльев с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД, при этом соотношение объема высокоскоростного набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном 2/3 длине хорды крыла вдоль оси реактивного двигателя, при этом в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия вертикальных реактивных моментов от поворотных одиночных двигателей ТРДД в передней и хвостовой части фюзеляжа направлены в трех направлениях;

на фиг. 13 - компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой, в плане, по фиг. 12, при положении двигателей ТРДД в режиме горизонтального полета;

на фиг. 14 - в режиме вертикального взлета, зависания и посадки показана компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой в плане с сигарообразной формой фюзеляжа, с двумя поворотными двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях с поворотной платформой в передней части фюзеляжа, и двумя двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на горизонтальных консолях в хвостовой части фюзеляжа, при этом при этом вокруг двух передних ТРДД предусмотрены круговые сегментные крылья, при этом боковые линейные крылья с элементами механизации для изменения профиля крыла расположены за задними двигателями ТРДД по ходу полета, при этом носки всех крыльев с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД, при этом соотношение объема высокоскоростного набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном 2/3 длине хорды крыла вдоль оси реактивного двигателя, при этом в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия вертикальных реактивных моментов от поворотных одиночных двигателей ТРДД в передней и хвостовой части фюзеляжа направлены в трех направлениях;

на фиг. 15 - компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой, в плане, по фиг. 14, при положении двигателей ТРДД в режиме горизонтального крейсерского полета;

на фиг. 16 - в режиме вертикального взлета, зависания и посадки показана компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой в плане с дискообразной формой фюзеляжа, с тремя поворотными двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на опорных горизонтальных круговых консолях, при этом вокруг поворотных ТРДД предусмотрены круговое замкнутое крыло с элементами механизации для изменения профиля крыла, при этом носок замкнутого крыла с элементами механизации для изменения профиля крыла расположен в области высокоскоростного набегающего потока истекающей струи из поворотных двигателей ТРДД, при этом соотношение объема высокоскоростного набегающего потока истекающей струи из сопел поворотных двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном 2/3 длине хорды крыла вдоль оси реактивного двигателя, при этом в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия вертикальных реактивных моментов от одиночных поворотных двигателей ТРДД направлены радиально в трех направлениях;

на фиг. 17 - компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой, в плане, по фиг. 16, при положении двигателей ТРДД в режиме горизонтального полета;

на фиг. 18 - в режиме вертикального взлета, зависания и посадки показана компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой в плане то же, что и по фиг. 15, с дискообразной формой фюзеляжа, с четырьмя поворотными двигателями ТРДД;

на фиг. 19 - компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой, в плане, по фиг. 18, в режиме горизонтального крейсерского полета;

на фиг. 20 - в режиме вертикального взлета, зависания и посадки показана компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой в плане с сигарообразной формой фюзеляжа, с двумя поворотными двигателями ТРДД с со степенью контурности более 2, например турбовентиляторными двигателями со смешением потоков, размещенными на опорных горизонтальных круговых консолях, при этом вокруг поворотных ТРДД предусмотрены круговое замкнутое крыло с элементами механизации для изменения профиля крыла, и одним двигателем ТРДД с со степенью контурности более 2, например турбовентиляторным двигателем со смешением потоков, размещенным в хвостовой части фюзеляжа, при этом носки замкнутого крыла и трапециевидного крыла в хвостовой части фюзеляжа с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД, при этом соотношение объема набегающего потока истекающей струи из сопел двигателей ТРДД по верхней и по нижней поверхностям крыльев с элементами механизации для изменения профиля крыла самолета может изменяться в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла на расстоянии равном 2/3 длине хорды крыла вдоль оси реактивных двигателей, при этом в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия вертикальных реактивных моментов от одиночных двигателей ТРДД направлены в трех направлениях;

на фиг. 21 - компоновочная схема самолета с укороченным либо вертикальным взлетом и посадкой, в плане, по фиг. 20, при положении двигателей ТРДД в режиме горизонтального полета.

На представленных чертежах позициями обозначены:

поз. 1 - фюзеляж сигарообразной формы;

поз. 2 - фюзеляж дискообразной формы;

поз. 3 - двигатель ТРДД с со степенью контурности более 2, например турбовентиляторный двигатель со смешением потоков;

поз. 4 - несущая горизонтальная консоль для крепления турбореактивных двигателей;

поз. 5 - несущая горизонтальная консоль с поворотной платформой для возможности поворота турбореактивных двигателей вокруг вертикальной оси;

поз. 6 - несущая опорная круговая консоль;

поз. 7 - консоль бокового линейного крыла;

поз. 8 - трапециевидное хвостовое крыло;

поз. 9 - поворотное крыло вокруг вертикальной оси;

поз. 10 - круговое сегментное крыло;

поз. 11 - круговое замкнутое крыло;

поз. 12 - элементы механизации крыла для изменения профиля крыла;

поз. 13 - хвостовое оперение;

поз. 14 - воздухозаборник для хвостового турбореактивного двигателя;

поз. 15 - хорда крыла;

поз. 16 - направление потока истекающей струи из сопел двигателей ТРДД;

поз. 17 - направление набегающего потока атмосферного воздуха;

ΔL - расстояние между выхлопной частью сопла двигателей ТРДД со степенью контурности более 2 и носком крыла располагаемого в створе набегающего потока истекающей струи из двигателей ТРДД;

ΔНкд - смещение оси сопла двигателя ТРДД со степенью контурности более 2 и горизонталью проходящей через носок крыла;

α1 - угол атаки между хордой крыла и потоком истекающей струи из сопел двигателей ТРДД;

α2 - угол атаки между хордой крыла и набегающим потоком атмосферного воздуха.

Mpz - вертикальный реактивный момент относительно центра тяжести летательного аппарата;

Осуществление изобретения.

Создание подъемной силы для реактивного самолета с горизонтальным взлетом и посадкой включающего фюзеляж, кабину управления, интегральную систему управления, крылья с элементами механизации для изменения профиля крыла, реактивные двигатели ТРДД со степенью контурности более 2, осуществляется следующим образом. Так как скорость набегающего потока является наиболее значимым фактором, в квадратичной зависимости, влияющим на величину подъемной силы крыла летательного апапарата, то расположение носков крыльев в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД со степенью контурности более 2 со смешением потоков позволяет значительно увеличить подъемную силу крыла реактивного самолета при соблюдении соотношения объема высокоскоростного набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла одного либо нескольких двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя. Использование данного изобретения позволит существенно повысить подъемную силу крыла реактивного самолета, и как следствие существенно снизить величину горизонтальной скорости при взлете и посадке. Создание подъемной силы для реактивного самолета с вертикальным взлетом и посадкой, включающего фюзеляж, кабину управления, интегральную систему управления, крылья с элементами механизации для изменения профиля крыла, реактивные двигатели ТРДД со степенью контурности более 2, осуществляется с учетом аналогичного использования увеличения скорости воздушного набегающего потока на крыло либо крылья летательного аппарата, и осуществляется следующим образом. Обдув высокоскоростным набегающим потоком истекающей струи из двигателей ТРДД со степенью контурности более 2 участков крыльев с элементами механизации для изменения профиля крыла, при направлении результирующих тяговых усилий от одиночных либо групп двигателей ТРДД со степенью контурности более 2 направленных как минимум в трех направлениях позволяет создавать усилия подъемных вертикальных реактивных моментов, и при достижении уравновешенного суммарного вертикального реактивного момента относительно центра тяжести летательного аппарата позволяет осуществлять вертикальный подъем, зависание и вертикальную посадку летательного аппарата, при этом рекомендуется соблюдать соотношение объема высокоскоростного набегающего потока истекающей струи из сопел каждого двигателя ТРДД со степенью контурности более 2, по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла каждого двигателя ТРДД со степенью контурности более 2 должна располагаться на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя.

Похожие патенты RU2670357C1

название год авторы номер документа
СПОСОБ ОСУЩЕСТВЛЕНИЯ КОРОТКОГО ЛИБО ВЕРТИКАЛЬНОГО ВЗЛЕТА, КОРОТКОЙ ЛИБО ВЕРТИКАЛЬНОЙ ПОСАДКИ 2018
  • Сушенцев Борис Никифорович
RU2703244C1
САМОЛЕТ (ВАРИАНТЫ) 2017
  • Сушенцев Борис Никифорович
RU2670161C1
САМОЛЕТ С УКОРОЧЕННЫМ ЛИБО ВЕРТИКАЛЬНЫМ ВЗЛЕТОМ И ПОСАДКОЙ 2019
  • Сушенцев Борис Никифорович
RU2708120C1
СПОСОБ ОСУЩЕСТВЛЕНИЯ КОРОТКОГО ЛИБО ВЕРТИКАЛЬНОГО ВЗЛЕТА, КОРОТКОЙ ЛИБО ВЕРТИКАЛЬНОЙ ПОСАДКИ САМОЛЕТА 2019
  • Сушенцев Борис Никифорович
RU2709990C1
КРЫЛО С ИЗМЕНЯЕМЫМИ АЭРОДИНАМИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ И САМОЛЕТ (ВАРИАНТЫ) 2018
  • Сушенцев Борис Никифорович
RU2694478C1
РАКЕТОНОСЕЦ-ДОСТАВЩИК (ВАРИАНТЫ), ВЫСОКОМАНЕВРЕННЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ (ВАРИАНТЫ) И СПОСОБ БЕСКОНТАКТНОГО ВЕДЕНИЯ БОЕВЫХ ДЕЙСТВИЙ 2017
  • Сушенцев Борис Никифорович
RU2701366C2
САМОЛЕТ С УКОРОЧЕННЫМ ЛИБО ВЕРТИКАЛЬНЫМ ВЗЛЕТОМ И ПОСАДКОЙ С ГИБРИДНОЙ СИЛОВОЙ УСТАНОВКОЙ 2019
  • Сушенцев Борис Никифорович
RU2729750C1
САМОЛЕТ С УКОРОЧЕННЫМ ЛИБО ВЕРТИКАЛЬНЫМ ВЗЛЕТОМ И ПОСАДКОЙ С ВИНТОМОТОРНЫМИ, ЛИБО ТУРБОВИНТОВЫМИ, ЛИБО ТУРБОВИНТОВЕНТИЛЯТОРНЫМИ ДВИГАТЕЛЯМИ (ВАРИАНТЫ) 2017
  • Сушенцев Борис Никифорович
RU2670361C1
КРЫЛО С ИЗМЕНЯЕМЫМИ АЭРОДИНАМИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ И ЛЕТАТЕЛЬНЫЕ АППАРАТЫ С ИСПОЛЬЗОВАНИЕМ ДАННОГО КРЫЛА (ВАРИАНТЫ) 2018
  • Сушенцев Борис Никифорович
RU2675287C1
СПОСОБ ВЫПОЛНЕНИЯ ПОЛЕТА ЛЕТАТЕЛЬНОГО АППАРАТА ПО ТРУДНОПРЕДСКАЗУЕМОЙ И МАЛОУЯЗВИМОЙ ТРАЕКТОРИИ В ЗОНЕ ВОЗМОЖНОГО ПОРАЖЕНИЯ УПРАВЛЯЕМЫМИ СНАРЯДАМИ, А ТАКЖЕ ЛЕТАТЕЛЬНЫЙ АППАРАТ, НЕОБХОДИМЫЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ДАННОГО СПОСОБА 2018
  • Сушенцев Борис Никифорович
RU2689065C1

Иллюстрации к изобретению RU 2 670 357 C1

Реферат патента 2018 года СПОСОБ УВЕЛИЧЕНИЯ ПОДЪЕМНОЙ СИЛЫ КРЫЛА ЛЕТАТЕЛЬНОГО АППАРАТА ОТ РЕАКТИВНОЙ ТЯГИ ДВУХКОНТУРНЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЕЙ (ТРДД) СО СТЕПЕНЬЮ КОНТУРНОСТИ БОЛЕЕ 2 И ЛЕТАТЕЛЬНЫЕ АППАРАТЫ С ИСПОЛЬЗОВАНИЕМ ДАННОГО СПОСОБА (ВАРИАНТЫ)

Группа изобретений относится к области авиации. Способ создания подъемной силы крыла летательного аппарата, в котором носок крыла летательного аппарата располагают в области набегающего потока истекающей струи одного либо нескольких двигателей ТРДД со степенью контурности более 2. Набегающий поток истекающей струи из сопел одного либо нескольких двигателей ТРДД направляют по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла. Соотношение объема набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла летательного аппарата, составляет от 30%: 70% до 10%: 90%. Выхлопную часть сопла одного либо нескольких двигателей ТРДД располагают на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла вдоль оси реактивного двигателя. Предложены варианты самолетов с реактивными двигателями, реализующие способ. Группа изобретений направлена увеличение подъемной силы. 3 н. и 1 з.п. ф-лы, 21 ил.

Формула изобретения RU 2 670 357 C1

1. Способ создания подъемной силы крыла реактивного самолета от реактивной тяги одного или нескольких реактивных двигателей, отличающийся тем, что носок крыла летательного аппарата располагают в области высокоскоростного набегающего потока истекающей струи из одного либо нескольких двухконтурных реактивных двигателей (ТРДД) со степенью контурности более 2, при этом высокоскоростной набегающий поток истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 направляют по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла, при этом соотношение объема высокоскоростного набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла летательного аппарата составляет от 30%: 70% до 10%: 90%, при этом выхлопную часть сопла одного либо нескольких двигателей ТРДД со степенью контурности более 2 располагают на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя.

2. Реактивный самолет, включающий фюзеляж, крылья с элементами механизации для изменения профиля крыла, реактивные двигатели, кабину управления, интегральную систему управления, отличающийся тем что реактивные двигатели выполнены двухконтурными со степенью контурности более 2 и закреплены на фюзеляже либо на горизонтальных консолях фюзеляжа, при этом крылья с элементами механизации для изменения профиля крыла расположены за двигателями ТРДД со степенью контурности более 2 по ходу полета, при этом носки крыльев с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД со степенью контурности более 2 при соблюдении соотношения объема высокоскоростного набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2 по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла одного либо нескольких двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя.

3. Реактивный самолет, с укороченным либо вертикальным взлетом и посадкой, включающий фюзеляж, крылья с элементами механизации для изменения профиля крыла, реактивные двигатели, кабину управления, интегральную систему управления, отличающийся тем, что реактивные двигатели выполнены двухконтурными со степенью контурности более 2 и закреплены на фюзеляже либо на горизонтальных консолях фюзеляжа, при этом участки крыльев с элементами механизации для изменения профиля крыла расположены в области высокоскоростного набегающего потока истекающей струи из двигателей ТРДД со степенью контурности более 2, при соблюдении соотношения объема высокоскоростного набегающего потока истекающей струи из сопел одного либо нескольких двигателей ТРДД со степенью контурности более 2, по верхней и по нижней поверхностям крыла с элементами механизации для изменения профиля крыла самолета в интервале от 30%: 70% до 10%: 90%, при этом выхлопная часть сопла одного либо нескольких двигателей ТРДД со степенью контурности более 2 располагается на расстоянии от носка крыла не менее чем ΔL=3×Cmax, где Cmax - максимальная толщина крыла в вертикальной плоскости вдоль оси реактивного двигателя, при этом для возможности создания устойчивого суммарного уравновешенного силового реактивного момента относительно центра тяжести самолета в режиме вертикального подъема, зависания и посадки результирующие тяговые усилия от одиночных либо групп двигателей ТРДД со степенью контурности более 2 направлены, как минимум, в трех направлениях.

4. Реактивный самолет по п. 3, отличающийся тем, что два или более двигателей ТРДД со степенью контурности более 2 выполнены с возможностью поворота вокруг вертикальной оси, при этом участки крыльев с элементами механизации для изменения профиля крыла выполнены в виде замкнутого кругового крыла, либо в виде круговых сегментов крыла вокруг поворотных двигателей ТРДД со степенью контурности более 2 и располагаются в области высокоскоростного набегающего потока истекающей струи из поворотных двигателей ТРДД.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670357C1

СПОСОБ И УСТРОЙСТВО СОЗДАНИЯ ПОДЪЕМНОЙ СИЛЫ ДЛЯ ЛЕТАТЕЛЬНОГО АППАРАТА С ВЕРТИКАЛЬНЫМ ВЗЛЕТОМ И ПОСАДКОЙ 2011
  • Ансеров Дмитрий Олегович
  • Ансеров Алексей Дмитриевич
RU2491206C2
EP 3144216 A1, 22.03.2017
УСТАНОВКА ДЛЯ СВЕТОЛАЗЕРНОЙ ОБРАБОТКИ И ОБОГРЕВА ЯИЦ СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПТИЦЫ 2003
  • Мамукаев Матвей Николаевич
  • Гутиев Игорь Петрович
  • Тохтиев Тотраз Аликович
  • Арсагов Вадим Анатольевич
RU2267265C2

RU 2 670 357 C1

Авторы

Сушенцев Борис Никифорович

Даты

2018-10-22Публикация

2017-03-07Подача