Способ определения потерь воды на испарение в воздухе при дождевании Российский патент 2018 года по МПК G01N33/00 

Описание патента на изобретение RU2670454C1

Изобретение относится к сельскому хозяйству, в частности к орошаемому земледелию при эксплуатации многоопорных дождевальных машин, осуществляющих полив из подземных и поверхностных источников, а так же из закрытой и открытой оросительной сети.

Известен способ определения потерь воды на испарение и снос ветром при испытаниях дождевальных машин и установок, включающий измерения расхода воды машиной дроссельным прибором, водосливом или объемным способом, расхода воды по дождемерам, расставленным на поверхности земли в пределах площади полива, а расчет потерь воды на испарение и снос ветром (Е) выполняют по формуле:

где Qоб - расход воды машиной;

Qд - расход воды по дождемерам.

(ОСТ 70.11.1-74. Испытания сельскохозяйственной техники. Машины и установки дождевальные. Программа и методы испытаний. - М.: ВО "Сельхозтехника" Совета Министров СССР, 1974, - с. 35).

К недостаткам данного способа следует отнести большие затраты времени, трудоемкость и невозможность его применения в условиях эксплуатации дождевальных машин из-за нарушения состояния посева при расстановке дождемеров, измерения накопленных в них объемов воды и расходов дождевальных аппаратов. Затраты времени на реализацию данного способа составляют не менее 3 часов, в течение которых происходит изменение метеорологической обстановки в районе полива, что не позволяет полученное значение величины Е использовать при определении продолжительности стоянки машины на позиции или скорости ее движения.

Необходимость в информации о потерях воды на испарение в воздухе орошения дождеванием возникает до 5-6 раз в сутки вследствие известного внутрисуточного изменения метеорологических параметров, определяющих их величину (температура и относительная влажность воздуха, скорость ветра).

Известен также способ определения потерь воды на испарение в воздухе при дождевании машиной конкретной марки, предусматривающий до проведения эксплуатационных поливов многократные единовременные измерения концентрации ионов, например, натрия или хлора в поливной воде на выходе из дождевального аппарата (С1) и на уровне поверхности земли или растительного покрова (С2), комплекса метеорологических параметров, влияющих на интенсивность процесса испарения капель искусственного дождя в воздухе: температуры (t) и относительной влажности ϕ) воздуха, скорости ветра (V), в пределах интервалов возможного их изменения для зоны применения данной дождевальной машины, расчет потерь воды на испарение в воздухе (Е) для каждого зафиксированного сочетания метеорологических параметров (t, ϕ, V) ведут по формуле:

а затем выполняют регрессионный анализ экспериментальных данных и получают эмпирическую математическую зависимость вида

для последующего оперативного определения величины Е при любых сочетаниях метеорологических параметров -t ϕ, V в процессе эксплуатационного полива измеряют необходимые метеорологические параметры (t, ϕ, V) или получают информацию о них и определяют по формуле (3) величину потерь воды на испарение (статья Штангей А.И. Новый способ учета потерь воды на испарение при дождевании. - Гидротехника и мелиорация, 1975, 9, с. 51-53).

Формула для определения Е, полученная по описанному выше способу (Мелиорация и водное хозяйство. Орошение: Справочник / Под ред. Б.Б. Шумакова. - М., Колос, 1999, с. 182):

где t - температура воздуха, °С;

ϕ - относительная влажность воздуха, %;

V - скорость ветра, м/с.

Данная формула является не корректной, так как не учитывает характеристику дождя и параметров машины таких, как высота подъема облака, диаметр капель, интенсивность дождя, что на наш взгляд очень важна.

К недостаткам данных способов следует отнести высокую стоимость проведения работ, так как для определения Е в условиях выполнения эксплуатационных поливов необходимо иметь в относительной близости от орошаемого массива метеостанцию, соответствующий персонал для определения несколько раз в сутки значений метеорологических факторов, например t, ϕ, V, и расчета величины Е, систему передачи информации по Е от метеостанции до оператора дождевальной машины; низкую точность вследствие значительной удаленности метеостанций от орошаемых массивов и малой плотности существующей сети метеостанций; сложность, так как эмпирические формулы (3) имеют три и более параметров и, как правило, нелинейные, а номограммы для них неудобны для использования в полевых условиях и требуют определенного уровня квалификации.

Указанные выше недостатки в большинстве случаев не преодолены в практике орошаемого земледелия, потери воды на испарение, либо их не учитывают, либо принимают равными условно фиксированной величине для каждого месяца полива, ориентируясь на среднее их значение, что не отвечает современным требованиям к качеству полива.

Наиболее точная и корректная формула для определения Е, которая учитывает не только метеорологические, но и конструктивно-технологические параметры машины (Слюсаренко В.В., Надежкина Г.П., Рыжко Н.Ф. Снижение потерь воды при поливе дождеванием. Научная жизнь, 2013, №6, с. 57-60 или Слюсаренко В.В., Надежкина Г.П., Акпасов А.П., Дасаева З.З. Снижение потерь воды при дождевании. Научное обозрение. 2015. №19. С. 49-52) имеет вид:

где h - высота подъема капель дождя над почвой, м;

n - частота вращения аппарата, об/мин;

dк - средний диаметр капель, мм;

Ф - комплексный показатель напряженности климата;

Рс, Рм - средняя и мгновенная интенсивность дождя, мм/мин;

Kα - коэффициент, учитывающий изменение величины испарения и сноса дождя в зависимости от величины угла между трубопроводом машины «Фрегат» и направлением ветра Kα = 1 - 0,009(90 - α);

α - угол между трубопроводом дождевальной машины и направлением ветра, град.

Наиболее близким по технической сущности к предложенному изобретению является способ определения потерь воды на испарение в воздухе при дождевании преимущественно подземными водами (Патент РФ №2206978, МПК A01G25/09, опубл. 27.06.2003 г., бюл. №18), который предусматривает измерение концентрации преобладающего иона в поливной воде, снятие комплекса метеорологических параметров и определение потерь воды на испарение в воздухе с фиксацией температуры прогрева поливной воды по длине трубопровода. Величину потерь на испарение в воздухе устанавливают на основе регрессивного анализа конкретных сочетаний метеорологических параметров по математической зависимости

где ΔТ - прогрев воды по длине водопроводящего трубопровода многоопорной дождевальной машины.

К недостаткам существующего способа следует отнести ограниченность в использовании только при поливе подземными водами, кроме того прогрев воды является существенным только при температурах более 20°С, что ограничивает его применение, а при использовании его при орошении дождевальными машинами типа «Фрегат», «Кубань», «Walley», «Zimmatic», имеющими в качестве водопроводящего пояса стальной трубопровод прогрев воды составляет не более 2-5°С, что не является точным отображением испарения воды в воздухе при поливе дождевальными машинами.

Указанные выше недостатки в практике орошения дождевальными машинами со стальными трубопроводами не позволяют с достаточной точностью определить потери воды на испарение в воздухе и не дают возможность скорректировать поливные нормы.

Сущность изобретения заключается в следующем.

Как известно, точность определения нормы полива является основополагающей в экономии воды, предотвращении смыва и, самое главное, поддерживает оптимальный водный баланс, способствующий нормальному режиму питания и развития растений, получению стабильного и высококачественного урожая сельскохозяйственных культур.

Условием проведения своевременного орошения с заданной поливной нормой при различных климатических условиях, времени и места забора является использование научных высокотехнологических методов, основанных на минимизации затрат и возможности автоматизации полива.

Технической задачей настоящего изобретения является разработка способа определения потерь воды на испарение при орошении водой из любого источника и любой широкозахватной машиной с достаточной точностью.

Единым техническим результатом, достигаемым при решении настоящей задачи, является обеспечение высокой точности определения потерь воды на испарение и при поливе орошением за счет оптимизации процесса замера разности температур орошаемой воды, изменяющейся в процессе эксплуатации дождевальной машины путем измерения изменения температуры непосредственно дождевого облака, создаваемого дождеобразующими устройствами.

Указанный технический результат достигается тем, что в способе определения потерь воды на испарение в воздухе при дождевании машинами, включающем установленные величины прогрева поливной воды, определение величины потерь на основе регрессионного аспекта конкретных сочетаний метеорологических параметров и конструктивно-технологических характеристик машины, измерение прогрева поливной воды осуществляют непосредственно в дождевом облаке замером температур на выходе из дождеобразующего устройства и в приземном слое на границе дождевого облака по середине дождевальной машины, величину потерь поливной воды на испарение в воздухе определяют по зависимости:

где ΔТ1 - прогрев воды в дождевом облаке;

f - функция.

При этом интенсивность процесса испарения определяется комплексом метеорологических параметров и конструктивно-технологических характеристик машины в интервале возможного их изменения в зоне орошения, определением потерь воды на испарение, а получение математической зависимости для определения искомой величины:

где h - высота подъема капель дождя над почвой, м;

t - температура воздуха, °С;

ϕ - относительная влажность воздуха, %;

V - скорость ветра, м/с;

n - частота вращения аппарата, об/мин;

dк- средний диаметр капель, мм;

α - угол между трубопроводом дождевальной машины и направлением ветра, град;

ρс, ρм - средняя и мгновенная интенсивность дождя, мм/мин.

Измерение и констатация результатов параметров и характеристик с одновременным измерением температуры воды в дождевом облаке у дождеобразующего устройства и на границе дождевого облака в приземном слое с учетом растительного покрова служат основой для выполнения регрессионного анализа расчетных значений потерь воды на испарение соответствующих величин прогрева воды в дождевом облаке, получают однофакторную математическую зависимость для определения искомой величины испарения вида:

где ΔТ2 - прогрев воды в дождевом облаке, который измеряют одновременно с метеорологическими и конструктивно-технологическими параметрами машины в процессе эксплуатационного полива.

За счет того, что способ предусматривает учет не только метеорологических параметров, но и конструктивно-технологические характеристики машины можно утверждать, что величина потерь, рассчитываемая по формуле будет более точна, так как является более идентичным отображением процесса испарения воды из дождевого облака, образованного дождеобразующими устройствами. Кроме того, простота, доступность и оперативность измерения изменения температуры воды в дождевом облаке, а так же соответствие большей достоверности и корректности отображения процесса испарения в дождевом облаке изменением его температуры, дает нам право утверждать, что предложенное изобретение соответствует критерию «новизна».

Изобретение поясняется чертежами. На фиг. 1 схематично изображена дождевальная машина; на фиг. 2 - график зависимости потерь воды на испарение в воздухе при дождевании дождевальной машиной «Фрегат» от величины прогрева воды в дождевом облаке в условиях Саратовского Заволжья.

Способ определения потерь воды на испарение в воздухе при поливе дождеванием дождевальной машины предусматривает разовую постановку специального эксперимента в условиях эксплуатационного режима полива с измерением комплекса метеорологических параметров и конструктивно-технологических характеристик машины, оказывающих существенное влияние на интенсивность процесса испарения. При этом дождевальная машина «Фрегат» укомплектована как дождевальными аппаратами, так и короткоструйными насадками, длина трубопровода составляет 454 м, высота расположения дождеобразующих устройств 2,4 м, замеры всех показателей осуществляли как минимум в четырех положениях машины, при различных температурах воздуха, направления и скорости ветра в течение светового дня через каждые 50 м длины трубопровода машины в течение общепринятого времени полива, то есть равномерно охватывали диапазон от минимально возможного до максимально возможного каждого параметра и соответствия характеристик стабильным режимам полива серийной дождевальной машиной «Фрегат».

Далее определяют расчет потерь воды на испарение в воздухе по математической формуле (5), регрессионный анализ полученных величин Е для конкретных условий и параметров (t, ϕ, V, h, dk, α, ρс, ρм), а так же соответствующие им значения температуры воды tн на выходе из дождеобразующего устройства и на границе дождевого облака в приземном слое с учетом растительного покрова на почве tк, в результате которого получают однофакторную математическую зависимость E=f(ΔTn).

Полученная величина Е является основой для коррекции нормы полива с учетом потерь воды на испарение.

Современное состояние средств регистрации температуры и связи позволяет оперативно реагировать на изменение температуры воды в дождевом облаке и принимать соответствующие решения по изменению норм полива.

Как показала практика изменение нормы полива корректировать необходимо не более трех раз в день в период времени с 6 до 9 часов, с 10 до 14 часов и после 14 часов, при стабильной погоде не более 2-х раз, первый в 8 часов и второй в 14 часов. При более стабильной и неизменной погоде коррекцию нормы полива целесообразно осуществлять один раз в день.

Пример. Полив овощных культур выполняется дождевальной машиной «Фрегат» при температуре воздуха t=28°C, относительной влажности ϕ=64%, скорости ветра 1,9 м/с, высота установки дождеобразующего устройства, диаметра капель, интенсивность дождя соответствует нормативным значениям серийной машины. Температура воды на выходе из дождеобразующего устройства tн=16,2°C и tк=24,7°C соответственно ΔTп=tн-tк=8,5°C.

Величина потерь воды на испарение в воздухе по способу аналогу и предлагаемому способу соответственно составила 14,1% и 17,2%, что явно указывает на более точное определение потерь предлагаемым способом, так как учтено максимально возможное количество факторов, влияющих на потери воды от испарения при работе дождевальных машин в реальных условиях Саратовского Заволжья.

Достоверность полученного результата определена следующим.

Во-первых - учет показателей определяющих площадь испарения (диаметр капель, интенсивность дождя).

Во-вторых - учет направления ветра, установлено, что при совпадении и несовпадении оси трубопровода дождевальной машины с направлением ветра до 2,7 раз изменяют влияние ветра на испарение.

В-третьих - учет времени нахождения капель в воздухе так же существенно влияет на испарение, что определяет высота установки дождеобразующих устройств.

Похожие патенты RU2670454C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТЕРЬ ВОДЫ НА ИСПАРЕНИЕ В ВОЗДУХЕ ПРИ ДОЖДЕВАНИИ ПРЕИМУЩЕСТВЕННО ПОДЗЕМНЫМИ ВОДАМИ 2001
  • Конторович И.И.
  • Салдаев А.М.
  • Бородычев В.В.
  • Лисконов А.А.
RU2206978C2
ДОЖДЕОБРАЗУЮЩЕЕ УСТРОЙСТВО ДОЖДЕВАЛЬНОЙ МАШИНЫ 2022
  • Дуброва Юрий Николаевич
  • Вчерашний Евгений Александрович
  • Мажайский Юрий Анатольевич
  • Голубенко Михаил Иванович
  • Яланский Дмитрий Владимирович
RU2793352C1
ДОЖДЕВАЛЬНАЯ ДЕФЛЕКТОРНАЯ НАСАДКА 2021
  • Левшунов Иван Александрович
  • Мажайский Юрий Анатольевич
  • Лукашевич Виктор Михайлович
  • Голубенко Михаил Иванович
RU2777069C1
ДОЖДЕВАЛЬНЫЙ АППАРАТ ТУРБИННОГО ТИПА 2021
  • Яланский Дмитрий Владимирович
  • Дубенок Николай Николаевич
  • Мажайский Юрий Анатольевич
  • Икроми Фирдавс
  • Голубенко Михаил Иванович
RU2759221C1
Дождевальная насадка 2023
  • Ильинский Андрей Валерьевич
  • Мажайский Юрий Анатольевич
  • Голубенко Михаил Иванович
RU2822339C1
Дождевальная машина 1990
  • Горбачев Анатолий Сергеевич
  • Губин Михаил Анатольевич
  • Гапиенко Валерий Николаевич
  • Коваленко Владимир Иванович
  • Лизин Петр Дмитриевич
  • Нестеренко Сергей Геннадьевич
SU1782478A1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ИРРИГАЦИОННО-ЭРОЗИОННЫХ ПРОЦЕССОВ В ОРОШАЕМОМ ЗЕМЛЕДЕЛИИ 2008
  • Кузнецов Петр Иванович
  • Мелихов Виктор Васильевич
  • Кружилин Иван Пантелеевич
  • Болотин Александр Григорьевич
  • Болотин Дмитрий Александрович
RU2353089C1
СПОСОБ ОЦЕНКИ КАЧЕСТВА ПОЛИВА ДОЖДЕВАНИЕМ 1992
  • Тимохин Вячеслав Михайлович
  • Коротунов Виктор Михайлович
  • Прималенный Александр Алексеевич
  • Годин Евгений Алексеевич
  • Чарыева Ирина Вячеславовна
  • Борисоглебский Геннадий Иванович
RU2054244C1
ДОЖДЕВАЛЬНЫЙ АППАРАТ ТУРБИННОГО ТИПА 2022
  • Вчерашний Евгений Александрович
  • Мажайский Юрий Анатольевич
  • Дуброва Юрий Николаевич
  • Голубенко Михаил Иванович
  • Вчерашняя Вероника Викторовна
RU2791484C1
МНОГООПОРНАЯ ДОЖДЕВАЛЬНАЯ МАШИНА ДЛЯ ПРЕЦИЗИОННОГО ОРОШЕНИЯ 2016
  • Щедрин Вячеслав Николаевич
  • Васильев Сергей Михайлович
  • Чураев Александр Анатольевич
  • Снипич Юрий Федорович
  • Куприянов Андрей Александрович
  • Завалюев Виталий Эдуардович
RU2631896C2

Иллюстрации к изобретению RU 2 670 454 C1

Реферат патента 2018 года Способ определения потерь воды на испарение в воздухе при дождевании

Изобретение относится к сельскому хозяйству, и может быть использовано при эксплуатации многоопорных дождевальных машин, осуществляющих полив из подземных и поверхностных источников, а также из закрытой и открытой оросительных сетей. Для этого определяют потери воды на испарение в воздухе при поливе дождевальной машиной, включающее установленные величины прогрева поливной воды. Определение величины потерь проводят на основе регрессионного анализа конкретных сочетаний метеорологических параметров и конструктивно-технологических характеристик машины. Измерение прогрева поливной воды осуществляют непосредственно в дождевом облаке замером температур на выходе из дождевого устройства и в приземном слое на границе дождевого облака посередине дождевальной машины или в плоскости, нормально расположенной к оси трубопровода дождевальной машины, делящей объем дождевого облака на две равные части с учетом равномерности полива. Величину потерь поливной воды на испарение в воздухе определяют по зависимости Е=f(ΔTп), где ΔТп - прогрев воды в дождевом облаке. Изобретение обеспечивает определение потерь воды на испарение с высокой точностью. 1 з.п. ф-лы, 2 ил., 1 пр.

Формула изобретения RU 2 670 454 C1

1. Способ определения потерь воды на испарение в воздухе при дождевании многоопорными дождевальными машинами, заключающийся в установлении величины прогрева поливной воды и определении величины потерь на основе регрессионного анализа конкретных сочетаний метеорологических параметров, отличающийся тем, что измерение прогрева поливной воды осуществляют непосредственно в дождевом облаке замером температур на выходе из дождеобразующего устройства и в приземном слое с учетом растительности на границе дождевого облака, а величину потерь поливной воды на испарение в воздухе определяют по зависимости

,

где - прогрев воды в дождевом облаке.

2. Способ по п. 1, отличающийся тем, что измерение температуры воды осуществляют в плоскости, нормально расположенной к оси трубопровода дождевальной машины, делящей объем дождевого облака на две равные части с учетом равномерности полива.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670454C1

СПОСОБ ОПРЕДЕЛЕНИЯ ПОТЕРЬ ВОДЫ НА ИСПАРЕНИЕ В ВОЗДУХЕ ПРИ ДОЖДЕВАНИИ ПРЕИМУЩЕСТВЕННО ПОДЗЕМНЫМИ ВОДАМИ 2001
  • Конторович И.И.
  • Салдаев А.М.
  • Бородычев В.В.
  • Лисконов А.А.
RU2206978C2
Способ мелкодисперсного дождевания однолетних сельскохозяйственных культур 1989
  • Иванцова Тамара Ивановна
  • Храбров Михаил Юрьевич
SU1732864A1
СЛЮСАРЕНКО В.В
и др
Потери воды на испарение и снос при поливе дождеванием и способы их снижения
Нива Поволжья, Агрономия, 2009, 1, 10, стр
Зубчатое колесо со сменным зубчатым ободом 1922
  • Красин Г.Б.
SU43A1
ЖЕЛЯЗКО В
И
Потери воды при дождевании сои дождевальной установкой IRRILAND RAPTOR
Вестник БГСА, 2015, стр
Кровля из глиняных обожженных плит с арматурой из проволочной сетки 1921
  • Курныгин П.С.
SU120A1
ЖУРАВЛЕВА Л.А и др
Оценка испарения и сноса дождя при дождевании
Сборник трудов конференции, 2016, стр
Кровля из глиняных обожженных плит с арматурой из проволочной сетки 1921
  • Курныгин П.С.
SU120A1

RU 2 670 454 C1

Авторы

Слюсаренко Владимир Васильевич

Русинов Алексей Владимирович

Надежкина Галина Петровна

Акпасов Антон Павлович

Русинов Дмитрий Алексеевич

Даты

2018-10-23Публикация

2017-04-27Подача