Фотоэлектрический преобразователь с просветляющим нанопокрытием Российский патент 2018 года по МПК H01L31/04 B82B1/00 

Описание патента на изобретение RU2671549C1

Изобретение относится к технологии изготовления оптоэлектронных приборов, а именно к конструкции фотоэлектрических преобразователей.

Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямое, одноступенчатое преобразование энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП).

Основные необратимые потери энергии в ФЭП связаны с:

- отражением солнечного излучения от поверхности преобразователя;

- прохождением части излучения через ФЭП без поглощения в нем;

- рассеянием на тепловых колебаниях решетки избыточной энергии образовавшихся фотопар;

- рекомбинацией образовавшихся фотопар на поверхностях и в объеме ФЭП;

- внутренним сопротивлением преобразователя и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяются различные мероприятия. К их числу относятся:

- использование полупроводников с оптимальной для солнечного излучения шириной запрещенной зоны;

- направленное улучшение свойств полупроводниковой структуры путем ее оптимального легирования и создания встроенных электрических полей;

- оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);

- применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;

- разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;

- переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам. Создание каскадных ФЭП из специально подобранных по ширине запрещенной зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.

Главной задачей усовершенствований ФЭП является увеличение КПД преобразования солнечной энергии в электрическую.

Известен патент, принятый нами за прототип, RU №2436191 (опубликованный 10.12.2011 г.) «Каскадный фотоэлектрический преобразователь с наноструктурным просветляющим покрытием», в котором предложен ФЭП на основе многослойной полупроводниковой структуры AlGaInP/GaInP/Ga(In)As/Ge, где фронтальный слой AlxGayIn1-x-yP, где х=0,53, y=0,47, толщиной 30÷40 нм. Просветляющее покрытие выполнено трехслойным и включает последовательно нанесенные слои Si02 толщиной 70÷80 нм, Si3N4 толщиной 25÷35 нм и TiOx, где х=1,8÷2,2, толщиной 20÷30 нм. Технический эффект в прототипе обеспечивается применением оптических покрытий, обеспечивающих просветление в ФЭП.

Недостатком указанного технического решения является то, что сохраняются значительные потери на контактной металлической сетке и не достигается максимально возможный КПД преобразования солнечного излучения.

Задачей заявляемого изобретения является разработка конструкции фотоэлектрического преобразователя с токопроводящим просветляющим нанопокрытием, обладающего повышенным КПД и низким коэффициентом отражения в коротковолновой и длинноволновой области солнечного спектра.

Технический результат изобретения заключается в снижении поверхностного удельного сопротивления и уменьшения площади металлической контактной сетки лицевого контакта (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к повышению КПД преобразования солнечной энергии в электрическую не менее чем на один абсолютный процент.

Указанный технический результат достигается тем, что в фотоэлектрическом преобразователе, включающем в себя полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие. Между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Ta2O5 толщиной 1÷2 нм. Просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al, толщиной 50÷60 нм, на который непосредственно нанесен лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм.

Само просветляющее покрытие выполняет двойную функцию: оно снижает отражение в широком спектре падающего солнечного излучения и снижает внутреннее сопротивление и площадь лицевой металлической контактной сетки.

Технический результат изобретения достигается за счет использования проводящего слоя ZnO:Al в составе просветляющего токопроводящего нанопокрытия и, дополнительно, туннельного слоя Та2О5 толщиной 1÷2 нм, необходимого для выполнения функции диффузионного барьера между материалами проводящего слоя ZnO:Al и фронтального слоя AlxGayIn1-x-yP.

Формирование просветляющего покрытия на фронтальной поверхности фотоэлектрического преобразователя необходимо для уменьшения потерь на отражение солнечного излучения. Включение в состав просветляющего нанопокрытия фотоэлектрического преобразователя токопроводящего слоя ZnO:Al, выполняющего совместно с металлической контактной сеткой функцию токосъема лицевого контакта, позволяет снизить сопротивление лицевого поверхностного электрода и одновременно, за счет этого, снизить площадь металлической контактной сетки. Наличие у просветляющего покрытия функции токосъема позволяет уменьшить общее сопротивление лицевого электрода и снизить омические потери. Выбор материалов для создания просветляющего покрытия общего состава Ta2O5/ZnO:Al/SiO2 обусловлен тем, что помимо низкого коэффициента отражения такая структура включает в себя токопроводящий слой, что в итоге приводит к увеличению КПД из-за уменьшения удельного поверхностного сопротивления и уменьшения площади металлической контактной сетки. Толщины слоев ZnO:Al в 50÷60 нм и SiO2 в 70÷90 нм обусловлены минимальными значениями отражения просветляющей системы в видимой и ближней инфракрасной области спектра. Также слой SiO2 выполняет функцию защитного слоя для всей конструкции. Если толщины слоев ZnO:Al и SiO2 будут больше и или меньше указанных значений, то это приведет к возрастанию коэффициента отражения в видимой и длинноволновой области солнечного спектра. Расчет минимального коэффициента отражения двухслойной, четвертьволновой просветляющей системы (n2h2=n3h30/4) при контроле на длине волны λ0 производится по формуле , где n2, n3, n4 - показатели преломления для SiO2, ZnO и фронтального слоя соответственно, h2 и h3 толщины SiO2 и ZnO соответственно.

При расположении металлической контактной сетки лицевого электрода на слое ZnO:Al, а не на контактном промежуточном слое, можно избежать повреждений полупроводниковой структуры ФЭП, присущих обычному ее формированию. В прототипе в местах вжигания металлической контактной сетки в контактный промежуточный слой GaAs в локальных местах происходит слишком глубокое проникновение металла контактной сетки в полупроводниковую структуру с затрагиванием активной части p-n-перехода, что приводит к формированию центров рекомбинации на продиффундировавших вглубь атомах металла и к увеличению рекомбинации образовавшихся фотопар в результате возникающих дефектов, что приводит к снижению КПД, возможно также локальное короткое замыкание p-n-перехода. Размещение же металлической контактной сетки на поверхности слоя оксида цинка устраняет проникновение металла вглубь полупроводниковой структуры AlGaInP/GaInP/Ga(In)As/Ge ФЭП.

Заявляемый фотоэлектрический преобразователь с просветляющим нанопокрытием поясняется чертежом, где схематически показано сечение фотопреобразователя.

Фотоэлектрический преобразователь с нанотолщинным просветляющим покрытием содержит:

- полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP - 1;

- просветляющее и одновременно токопроводящее покрытие 2 на поверхности фронтального слоя состоит из слоя оксида цинка 6, допированного алюминием ZnO:Al толщиной 50÷60 нм с показателем преломления n=2,2, и слоя 7 из оксида кремния SiO2 толщиной 70÷90 нм с показателем преломления n=1,45;

- тыльный омический контакт - 3;

- тонкий промежуточный туннельный барьерный слой 4 из Та2О5 толщиной до 2 нм;

- лицевой омический контакт 5 в виде металлических дорожек.

Пример конкретного выполнения

Изготовлен лицевой электрод фотоэлектрического преобразователя с просветляющим нанопокрытием, состоящим из слоя Ta2O5 толщиной 1 нм и слоя ZnO:Al толщиной 55 нм, нанесенных методом атомно-слоевого осаждения, металлических дорожек толщиной 0,3 мкм и шириной 20 мкм, и финального защитного слоя из SiO2 толщиной 85 нм, закрывающего слой ZnO:Al с металлическими дорожками.

Изготовленный таким образом на поверхности полупроводниковой структуры лицевой электрод обладает повышенной проводимостью и прозрачностью, что привело к повышению КПД фотоэлектрического преобразователя не менее чем на один абсолютный процент.

Заявляемый фотоэлектрический преобразователь с просветляющим токопроводящим нанопокрытием помимо низкого коэффициента отражения во всем спектре преобразования солнечного излучения дополнительно обладает низким поверхностным удельным сопротивлением и уменьшенной площадью металлической контактной сетки (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к получению максимального КПД (не менее чем на один абсолютный процент) преобразования солнечной энергии в электрическую.

Похожие патенты RU2671549C1

название год авторы номер документа
КАСКАДНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ С НАНОСТРУКТУРНЫМ ПРОСВЕТЛЯЮЩИМ ПОКРЫТИЕМ 2010
  • Андреев Вячеслав Михайлович
  • Малевская Александра Вячеславовна
  • Гудовских Александр Сергеевич
  • Задиранов Юрий Михайлович
RU2436191C1
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2015
  • Андреев Вячеслав Михайлович
  • Левин Роман Викторович
  • Пушный Борис Васильевич
RU2605839C2
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ С НАНОСТРУКТУРНЫМ ПРОСВЕТЛЯЮЩИМ ПОКРЫТИЕМ 2017
  • Самсоненко Борис Николаевич
  • Королева Наталья Александровна
  • Рыбин Владимир Викторович
RU2650785C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ НА УТОНЯЕМОЙ ГЕРМАНИЕВОЙ ПОДЛОЖКЕ 2021
  • Шварц Максим Зиновьевич
  • Малевская Александра Вячеславовна
  • Нахимович Мария Валерьевна
RU2781508C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ 2014
  • Самсоненко Борис Николаевич
  • Королева Наталья Александровна
RU2559166C1
Способ изготовления фотопреобразователя со встроенным диодом на германиевой подложке 2018
  • Самсоненко Борис Николаевич
  • Ханов Сергей Георгиевич
RU2672760C1
ФОТОЭЛЕМЕНТ ПРИЁМНИКА-ПРЕОБРАЗОВАТЕЛЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2015
  • Корнилов Владимир Александрович
  • Тугаенко Вячеслав Юрьевич
RU2593821C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ СО ВСТРОЕННЫМ ДИОДОМ 2016
  • Самсоненко Борис Николаевич
RU2645438C1
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ НА ОСНОВЕ КОМПЛЕКСОВ ФТАЛОЦИАНИНОВ И ИХ АНАЛОГОВ 2015
  • Томилова Лариса Годвиговна
  • Пушкарев Виктор Евгеньевич
  • Дубинина Татьяна Валентиновна
  • Толбин Александр Юрьевич
  • Хохлов Дмитрий Ремович
  • Дронов Михаил Александрович
  • Белогорохов Иван Александрович
  • Зефиров Николай Серафимович
RU2592743C1
КАСКАДНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Андреев Вячеслав Михайлович
  • Калюжный Николай Александрович
  • Лантратов Владимир Михайлович
  • Минтаиров Сергей Александрович
  • Емельянов Виктор Михайлович
RU2382439C1

Иллюстрации к изобретению RU 2 671 549 C1

Реферат патента 2018 года Фотоэлектрический преобразователь с просветляющим нанопокрытием

Изобретение относится к технологии изготовления оптоэлектронных приборов, а именно к конструкции фотоэлектрических преобразователей. Технический результат изобретения заключается в снижении поверхностного удельного сопротивления и уменьшении площади металлической контактной сетки (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к повышению КПД преобразования солнечной энергии в электрическую не менее чем на один абсолютный процент. Указанный технический результат достигается тем, что фотоэлектрический преобразователь с просветляющим нанопокрытием включает в себя полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие. Между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Ta2O5 толщиной 1÷2 нм. Просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al толщиной 50÷60 нм, на который непосредственно нанесен лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм. 1 ил.

Формула изобретения RU 2 671 549 C1

Фотоэлектрический преобразователь с просветляющим нанопокрытием, включающий полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие, отличающийся тем, что между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Та2О5 толщиной 1÷2 нм, просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al, толщиной 50÷60 нм, на который непосредственно нанесен металлический лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм.

Документы, цитированные в отчете о поиске Патент 2018 года RU2671549C1

КАСКАДНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ С НАНОСТРУКТУРНЫМ ПРОСВЕТЛЯЮЩИМ ПОКРЫТИЕМ 2010
  • Андреев Вячеслав Михайлович
  • Малевская Александра Вячеславовна
  • Гудовских Александр Сергеевич
  • Задиранов Юрий Михайлович
RU2436191C1
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2015
  • Андреев Вячеслав Михайлович
  • Левин Роман Викторович
  • Пушный Борис Васильевич
RU2605839C2
МНОГОПЕРЕХОДНЫЙ ПРЕОБРАЗОВАТЕЛЬ 2010
  • Андреев Вячеслав Михайлович
  • Калюжный Николай Александрович
  • Лантратов Владимир Михайлович
  • Минтаиров Сергей Александрович
  • Гудовских Александр Сергеевич
RU2442242C1
US 20130092218 A1, 18.04.2013
US 6316715 B1, 13.11.2001
US 20130104970 A1, 02.05.2013.

RU 2 671 549 C1

Авторы

Сигалаев Сергей Константинович

Казаков Валерий Алексеевич

Ризаханов Ражудин Насрединович

Высотина Елена Александровна

Шмыткова Екатерина Александровна

Даты

2018-11-01Публикация

2018-02-09Подача