Способ измерения давления пороховых газов в канале ствола оружия Российский патент 2018 года по МПК F41A31/00 

Описание патента на изобретение RU2673187C1

Предлагаемое изобретение относится к оружейной технике, конкретно - к области экспериментальной баллистики и предназначено для измерения давления пороховых газов в канале ствола огнестрельного оружия, например при проведении баллистических испытаний патронов.

Известен способ определения давления пороховых газов в канале ствола огнестрельного оружия по деформации измерительного элемента /1/, осуществляемой дном гильзы при ее перемещении в сторону зеркала затвора ствола оружия. В баллистическом оружии, реализующем данный способ, деформируемый элемент выполнен в виде группы крешерных столбиков, размещенных в гнездах специальной кассеты, а давление пороховых газов, действующее при выстреле на дно гильзы, передается на них через промежуточную втулку. Выбор зазоров между дном гильзы, промежуточной втулкой, торцовыми поверхностями крешерных столбиков, задней плоскостью кассеты и затворной частью оружия осуществляется винтовым регулятором.

Недостатки данного способа следующие:

1) Одноразовое применение совокупности крешерных столбиков;

2) Трудоемкость и соответствующие потери времени при перезарядке и замене деформируемого элемента (кассеты с крешерными столбиками), приводящие к остыванию канала ствола и исключающие возможность получения адекватных результатов при проведении баллистических испытаний партии патронов в условиях скорострельной стрельбы;

3) Трудоемкость перерасчета (определения) получаемого давления в зависимости от изменения размера столбика;

4) Отсутствие возможности автоматизированной обработки результатов измерений.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ измерения давления пороховых газов в канале ствола оружия /2/, также базирующийся на деформации измерительного элемента, осуществляемой дном гильзы при ее перемещении в сторону зеркала затвора ствола оружия. Для реализации данного способа предложено в качестве измерительного элемента использовать пьезоэлектрический датчик давления, чувствительный элемент которого вмонтирован в зеркало затвора и выступает над поверхностью зеркала на величину, необходимую для гарантированного поджатая устанавливаемого в стволе патрона. При этом чувствительный элемент датчика давления электроизолирован от корпуса затвора и корпуса гильзы.

Действующее в момент выстрела давление передается на гильзу, а она передает его усилие на чувствительный элемент (датчик), сигнал с которого поступает на регистрирующую аппаратуру, например осциллограф или вольтметр.

Данный способ также не лишен ряда отдельных недостатков, таких как:

1) Необходимость надежной электроизоляции чувствительного элемента датчика давления от корпуса затвора и корпуса гильзы;

2) Необходимость надежной изоляции от внешних электромагнитных наводок проводов линии связи, соединяющих датчик давления с регистрирующей аппаратурой;

3) Значительные механическое воздействие на провода линии связи датчика давления с регистрирующей аппаратурой в случае стрельбы в высоком темпе с использованием автоматического оружия со свободным или полусвободным затвором;

4) Большая вероятность возникновения паразитных сигналов с датчика давления в условиях автоматической стрельбы вследствие воздействия на него инерционных нагрузок.

5) Необходимость доработки затвора при использовании штатного оружия, - расточка углубления (глухого отверстия) под датчик давления.

Технической задачей предлагаемого изобретения является обеспечение проведения баллистических испытаний партии патронов в условиях скорострельной стрельбы с использованием штатного автоматического оружия, а также обеспечение возможности групповой ускоренной обработки результатов измерений.

Решение задачи достигается тем, что в известном способе определения давления пороховых газов в канале ствола огнестрельного оружия по деформации измерительного элемента, осуществляемой дном гильзы при ее перемещении в сторону зеркала затвора ствола оружия, в соответствии с изобретением в качестве измерительного элемента используют пленочный материал, изменяющий окраску под действием давления, закрепляемый непосредственно на дне гильзы.

Использование в качестве измерительного элемента вместо пьезодатчика чувствительного к воздействию давления пленочного материала, - т.е. тонкой пленки, изменяющей окраску под действием давления, позволяет избежать проблем, связанных с получением и передачей электрических сигналов.

Закрепление пленочного материала непосредственно на дне гильзы позволяет, вследствие его малой по отношению к размерам патрона толщины, при проведении измерений/испытаний осуществлять предварительное заряжание магазина (патронной емкости, в зависимости от типа используемого оружия - рожка, диска, обоймы, ленты и т.п.) испытуемыми патронами, и осуществлять испытательную стрельбу в автоматическом режиме или же с заданным темпом без остывания канала ствола.

Малая же толщина пленочного материала по отношению к допустимым линейным зазорам между подвижными элементами оружия со свободным или полусвободным затвором дает возможность использовать при испытании партии патронов штатное автоматическое оружие без доработки зеркала затвора.

Пленочный материал, изменяющий окраску под действием давления, может быть изготовлен на полимерной основе, например по типу пленки Prescale компании Fujifilm /3/, либо с ее применением.

Пленочный материал Prescale, изготавливаемый на основе высокопрочного полиэстера толщиной менее 200 мкм, предназначен для точного измерения давления до 300 МПа, и его распределения и баланса. Оказываемое давление на пленку оставляет на ее поверхности следы красного цвета в местах контакта. Степень давления на участок определяется по насыщенности цвета отпечатков.

Закрепляемый на дно гильзы пленочный материал может иметь форму кольца с диаметром, равным диаметру гильзы, и с отверстием по диаметру чашечки капсюля-воспламенителя, или же форму диска по диаметру дна гильзы, т.к. вследствие малой толщины может быть пробит накольным элементом ударника при осуществлении выстрела. Крепление его на дно гильзы может осуществляться, например, быстротвердеющими цианакрилатными клеями типа «Секунда», имеющими малую вязкость и соответственно малую (близкую к мономолекулярной) толщину формируемого адгезионного слоя.

Изобретение поясняется следующей графической информацией:

На фиг. 1 в качестве примера представлена принципиальная блок-схема осуществления способа.

На фиг. 2 (а, б) - пример расположения пленочного деформируемого элемента типа Prescale на дне гильзы (до и после воздействия давления).

Способ осуществляется (фиг. 1) в следующей последовательности операций и межоперационных переходов (нумерация позиций по фиг 2 а, б):

1) Из подлежащей испытаниям партии патронов осуществляется отбор необходимого их количества, оговоренного соответствующей НТД.

2) Патроны маркируются для последующей идентификации, например путем нанесения соответствующего номера 2 на боковую поверхность гильзы 1.

3) На донца гильз наклеиваются пленочные измерительные элементы 3, 3', чувствительным слоем наружу (фиг. 2а).

4) Снаряжается магазин соответствующего оружия с размещением в нем патронов в соответствии с обратной их нумерацией (n, n-1, …, 1).

5) Магазин пристыковывается к оружию, и осуществляется стрельба с заданным темпом.

Во время выстрела давление газов, возникающих от горения порохового заряда в гильзе 1 патрона, создает силу, выталкивающую пулю из канала ствола оружия и толкающую в обратном направлении гильзу 1, которая, выполняя функцию поршня, давит своим дном с закрепленным на нем измерительным элементом 3 (3') на поверхность зеркала затвора оружия.

Под действием этого давления закрепленный на дне гильзы 1 измерительный пленочный элемент приобретает окраску 4, 4' (фиг. 2б), насыщенность цвета которой определяется величиной давления.

После каждого выстрела в зависимости от вида/типа используемого оружия в ручном или автоматическом режиме осуществляется экстракция отстрелянной гильзы и перезарядка оружия, т.е. подача из магазина в патронник очередного патрона.

6) По завершению стрельбы осуществляются сбор гильз и их сортировка по прямой нумерации (1, 2, …, n).

7) Донные части отсортированных гильз, с изменившими под действием давления измерительными пленочными элементами 4 (4'), фотографируют цифровой камерой или сканируют.

Причем как фотографирование, так и сканирование могут производиться групповым методом, например, в случае сканирования - одновременно большого количества отстрелянных гильз с использованием шаблона-кассеты, размещаемой на планшетной части сканера, что обеспечит возможность последующей ускоренной обработки результатов измерений.

8) Полученные изображения передаются на компьютер, где обрабатываются посредством специального программного обеспечения, например типа системы FPD-8010E /3/, осуществляющей "перевод" насыщенности цвета отпечатков пленки типа Prescale в данные о величине давления.

Таким образом, предложенный способ измерения давления пороховых газов в канале ствола оружия благодаря использованию в качестве измерительного элемента пленочного материала, изменяющего окраску под действием давления и закрепляемого непосредственно на дне гильзы, позволяет проводить испытания с использованием штатного огнестрельного оружия, практически без потерь времени на замену измерительных элементов, что исключает остывание канала ствола и дает возможность получения адекватных результатов при проведения баллистических испытаний партии патронов в условиях скорострельной стрельбы, т.е. максимально приближенных к боевым.

Групповая регистрация результатов посредством сканирования (или цифровой фотосъемки), обеспечивает ускорение обработки результатов измерений.

Как непосредственно измерения, так и их математическая обработка могут осуществляться с применением современных программно-аппаратных средств, что позволит обеспечить многократные измерения, с одновременным снижением трудозатрат и повышением точности измерений с целью использования автоматизированных систем сбора и обработки информации о баллистических характеристиках боеприпасов.

Источники информации, принятые во внимание при оформлении заявки:

1) Патент РФ №2218537, F41A 31/00, Стрелковое баллистическое оружие, 2003 г.

2) Патент РФ №2352886, F41A 31/00, Устройство для баллистических испытаний патронов стрелкового оружия, 2007 г.

3) https://www.fujifilm.eu/ru/produkty/promyshlennye-produkty/plenka-prescale-dlja-izmerenija-raspredelenija-davlenija.

Похожие патенты RU2673187C1

название год авторы номер документа
Устройство для измерения давления пороховых газов в канале ствола оружия 2017
  • Ватутин Николай Михайлович
  • Колтунов Владимир Валентинович
  • Сидоров Иван Михайлович
  • Сидоров Михаил Игоревич
  • Хрячков Владислав Андреевич
  • Сонин Николай Сергеевич
  • Терентьев Андрей Борисович
RU2673181C1
УСТРОЙСТВО ДЛЯ БАЛЛИСТИЧЕСКИХ ИСПЫТАНИЙ ПАТРОНОВ СТРЕЛКОВОГО ОРУЖИЯ 2007
  • Андреев Петр Олегович
  • Черный Владимир Григорьевич
RU2352886C1
Крешерное стрелковое баллистическое оружие 2021
  • Веревкин Павел Сергеевич
  • Чирков Евгений Алексеевич
RU2762454C1
СТРЕЛКОВОЕ БАЛЛИСТИЧЕСКОЕ ОРУЖИЕ 2002
  • Грязев В.П.
  • Шипунов А.Г.
RU2218537C2
Стрелковый баллистический испытательный комплекс 2020
  • Белобрагин Валерий Александрович
  • Веревкин Павел Сергеевич
RU2733191C1
БАЛЛИСТИЧЕСКАЯ УСТАНОВКА 2011
  • Романов Валерий Григорьевич
  • Липченко Юрий Николаевич
  • Боев Вячеслав Ильич
RU2475687C1
ПАТРОН ДЛЯ СПОРТИВНО-ОХОТНИЧЬЕГО ОГНЕСТРЕЛЬНОГО ОРУЖИЯ 1998
  • Корсаков А.Г.
  • Шаповалов Е.В.
  • Корсаков Д.А.
RU2150662C1
БЕЗГИЛЬЗОВОЕ ОРУЖИЕ 2013
  • Палецких Владимир Михайлович
RU2549599C1
ПАТРОН ДЛЯ ЛИЧНОГО ОГНЕСТРЕЛЬНОГО ОРУЖИЯ И БРОНЕБОЙНАЯ ПУЛЯ ДЛЯ НЕГО 2000
  • Соловов А.А.
  • Лепин В.Н.
  • Воробьев С.П.
  • Михайлов А.И.
  • Соломин Н.П.
  • Гельфонд В.Л.
  • Камайкин Н.К.
RU2170407C1
РУЧНОЕ ОГНЕСТРЕЛЬНОЕ ОРУЖИЕ 2010
  • Калинин Сергей Алексеевич
  • Мокрушин Петр Михайлович
RU2506520C2

Иллюстрации к изобретению RU 2 673 187 C1

Реферат патента 2018 года Способ измерения давления пороховых газов в канале ствола оружия

Изобретение относится к оружейной технике – области экспериментальной баллистики. Способ измерения давления в канале ствола автоматического огнестрельного оружия заключается в оценке изменения цвета индикаторной пленки, наклеенной на дно гильзы, после произведенного выстрела. Насыщенность цвета пленки зависит от приложенного давления в месте контакта. Полученные данные анализируются компьютером. Технический результат – проведение баллистических испытаний партии патронов в условиях скорострельной стрельбы штатным оружием и сокращение времени оценки результатов. 2 ил.

Формула изобретения RU 2 673 187 C1

Способ определения давления пороховых газов в канале ствола огнестрельного оружия по деформации измерительного элемента, осуществляемой дном гильзы при ее перемещении в сторону зеркала затвора ствола оружия, отличающийся тем, что в качестве измерительного элемента используют пленочный материал, изменяющий окраску под действием давления, закрепляемый непосредственно на дне гильзы.

Документы, цитированные в отчете о поиске Патент 2018 года RU2673187C1

СПОСОБ ИСПЫТАНИЯ ПАРТИИ ПАТРОНОВ, ПРЕИМУЩЕСТВЕННО, КАЛИБРА 23 - 30 ММ, НА ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ МАКСИМАЛЬНОГО ДАВЛЕНИЯ ПОРОХОВЫХ ГАЗОВ С ПОМОЩЬЮ КРЕШЕРНОГО ПРИБОРА 1986
  • Аверин Н.Н.
  • Сабельников В.М.
  • Кравченко О.П.
  • Ламин А.А.
  • Усачев Б.К.
RU2087845C1
US 3443430 A1, 13.05.1969
WO 9119156 A2, 12.12.1991
Устройство для индицирования насосных ходов двигателя 1960
  • Лисицин В.Н.
SU138081A1

RU 2 673 187 C1

Авторы

Колтунов Владимир Валентинович

Ватутин Николай Михайлович

Сидоров Иван Михайлович

Сидоров Михаил Игоревич

Хрячков Владислав Андреевич

Сонин Николай Сергеевич

Терентьев Андрей Борисович

Тюкин Денис Олегович

Даты

2018-11-22Публикация

2017-12-21Подача