Способ измерения оптических характеристик атмосферы Российский патент 2018 года по МПК G01N21/47 G01W1/00 G01N15/02 

Описание патента на изобретение RU2674560C1

Изобретение относится к области метеорологии, а более конкретно, к способам определения оптических характеристик атмосферы, и может использоваться, например, для определения оптических параметров аэрозольных частиц в атмосфере.

Известен способ дистанционного оптического зондирования неоднородной атмосферы, при котором осуществляют посылку в атмосферу светового импульса и регистрацию рассеянного в обратном направлении света, преобразованного в электрические сигналы (см.SU №1597815, G01W 1/00,1990). В этом способе осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении, определения характеристик неоднородной атмосферы по мощностям сигналов, принятых и накопленных, с использованием расчетных формул, уменьшения областей зондирования и повторения процедуры измерений до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы.

Этот способ обладает недостаточной точностью, поскольку он основан на предположении о существовании связи коэффициента обратного рассеяния и коэффициента ослабления на исследуемой трассе зондирования. Это предположение не выполняется в условиях реальной неоднородной атмосферы.

Известен способ определения прозрачности атмосферы, включающий измерения на различных высотах через атмосферу по горизонтальной трассе, яркости объекта наблюдения при изменении расстояния между ним и точкой наблюдения при одном угле визирования на объект, и по отношению полученных значений судят об искомой прозрачности атмосферы (см.SU №1 314 806, G01N 21/47, 1994). Способ обеспечивает возможность определения характеристик прозрачности атмосферы на различных высотах.

Недостаток этого решения – трудоемкость и продолжительность его реализации.

Известен способ измерения оптических характеристик атмосферы, включающий регистрацию светового потока, рассеиваемого на частицах аэрозоля содержащихся в атмосфере (см.SU № 486251, G01N 15/00, 1975, и SU №739375, G01N 15/00, 1980).

К недостаткам данного способа следует отнести недостаточную достоверность результатов измерений из-за сильной зависимости процессов рассеяния и поглощения света от размера и оптических характеристик пылинок, сказывающуюся на точности и воспроизводимости измерений. Кроме того способ не обеспечивает возможность оперативного определения оптических характеристик атмосферы на различных высотах без использования сложных технических средств – носителей измерительного оборудования.

Задача, на решение которой направлено заявленное изобретение – повышение достоверности результатов измерений оптических характеристик атмосферы и обеспечение возможности оперативного их определения на различных высотах без использования сложных технических средств – носителей измерительного оборудования.

Технический результат – высокая достоверность результатов измерений оптических характеристик атмосферы и обеспечение возможности оперативного их определения на различных высотах без использования сложных технических средств и, на базе этого, повышение точности измерения концентрации аэрозольных частиц в атмосфере.

Для решения поставленной задачи, способ измерения оптических характеристик атмосферы, включающий регистрацию светового потока, рассеиваемого на частицах аэрозоля содержащихся в атмосфере, отличается тем, что предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью, в виде

log(Pmax) ∝ log(A),

где Pmax - максимальное значение степени линейной поляризации солнечного излучения, рассеянного на частицах аэрозоля;

А - отражательная способность частиц аэрозоля, при этом, измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора, в качестве которого используют поляриметр, который в процессе измерений ориентируют в зенит, причем, синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению и выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты. Кроме того, калибровочную зависимость формируют методом численного моделирования, для частиц неправильной формы, морфологически сходных с атмосферными аэрозолями и усредненных по размеру со степенным законом r–n, при значениях показателя степени, как минимум, n = 2.5 и 3. Кроме того, измерения на закате проводят до достижения тенью высоты 10-15 км над точкой измерений. Кроме того, измерения на восходе начинают с высоты тени 10-15 км над точкой измерений.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

Совокупность признаков формулы изобретения обеспечивает повышение достоверности результатов измерений оптических характеристик атмосферы и возможность оперативного их определения на различных высотах без использования сложных технических средств – носителей измерительного оборудования, при этом признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признаки «…предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью, в виде log(Pmax) ∝ log(A),

где Pmax - максимальное значение степени линейной поляризации солнечного излучения, рассеянного на частицах аэрозоля;

А - отражательная способность частиц аэрозоля…», обеспечивают возможность определения отражательной способности частиц аэрозоля.

Признаки «…измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора…» обеспечивают возможность оперативного определения отражательной способности частиц аэрозоля на различных высотах измерениями непосредственно с земли, за счет естественного перемещения солнца относительно земли и, соответствующего перемещения тени, отбрасываемой землей по высоте над точкой установки измерительного прибора (что исключает необходимость использования сложных технических средств– носителей измерительного оборудования).

Признаки указывающие, что в качестве измерительного прибора «используют поляриметр», позволяют проводить работу в пассивном режиме, с использованием солнечного света последовательно освещающего разные слои атмосферы и поляризующегося на частицах аэрозоля, находящегося в атмосфере.

Признак указывающий, что поляриметр «в процессе измерений ориентируют в зенит» обеспечивает возможность фиксации максимального значения степени линейной поляризации Pmax, наблюдаемого в диапазоне углов рассеяния θ = 70-110°, которому соответствуют значения углов между горизонтом и направлением на верхний край солнца, используемых при измерениях.

Признаки указывающие, что «синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению» позволяют «привязать» измеренные значения степени линейной поляризации солнечного излучения к высоте слоя атмосферы над точкой наблюдения.

Признаки указывающие, что «выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты» обеспечивают получение зависимости отражательной способности частиц аэрозоля от высоты положения соответствующего слоя атмосферы.

Признаки второго пункта формулы изобретения раскрывают процедуру получения калибровочной зависимости для наиболее распространенной размерности частиц аэрозоля.

Признаки третьего пункта формулы изобретения раскрывают высотные параметры проведения измерений на закате.

Признаки четвертого пункта формулы изобретения раскрывают высотные параметры проведения измерений на восходе.

Сущность изобретения пояснена на чертежах, при этом, на фиг. 1 показаны примеры частиц неправильной формы, представляющих из себя агломераты обломков; на фиг. 2 показаны примеры частиц неправильной формы, представляющих из себя слабо-связанные кластеры обломков; на фиг. 3 показаны диаграммы log(Pmax) – log(A) у данных частиц, усредненных по размеру со степенным законом r–n при значении показателя степени n = 2.5; на фиг. 4 показаны диаграммы log(Pmax) – log(A) у данных частиц, усредненных по размеру со степенным законом r–n при значении показателя степени n = 3; на фиг.5 показана схема измерения максимума линейной поляризации частиц аэрозоля атмосферной пыли в сумерках.

На чертежах показаны солнечный свет 1, граница 2 тени, поверхность земли 3, горизонт 4, направление ориентирования 5 (луч зрения) поляриметра 6, направление на верхний край Солнечного диска 7, высота 8 (h) границы тени 2 земли 3.

Отражательная способность – одна из важнейших характеристик пылевых частиц. Отражательная способность непосредственно влияет на точность оценок объемной концентрации пыли. Основным параметром, измеряемым в пассивном и активном методах дистанционного зондирования, является поток электромагнитного излучения (света), рассеянного частицами пыли в направлении детектора. Данная характеристика допускает двоякую интерпретацию – измеренный поток в равной степени может быть обусловлен рассеиванием света от большого числа слабо-отражающих частиц, так и от малого числа сильно-отражающих частиц. При этом, разница в отражательной способности пылевых частиц, взвешенных в атмосфере, может превышать порядок величины. Такая неопределенность обуславливает соответствующие ошибки измерений объемной концентрации пылевых частиц.

Пассивные методы дистанционного зондирования основаны на изучении характеристик солнечного света, рассеянного частицами пыли. Отличительной особенностью исходного солнечного излучения является отсутствие у него какой бы то ни было поляризации. Однако, после взаимодействия с частицами пыли, свет приобретает частичную линейную поляризацию. Состояние поляризации принято описывать с помощью параметра степень линейной поляризации P, при этом, поляризация зависит лишь от рассеивающих свойств частиц, но не от их количества.

Другой важной особенностью степени линейной поляризации является ее зависимость от геометрии наблюдения/облучения, которую можно описать с помощью угла рассеяния θ: дополнительный угол к углу «источник света – частица – детектор». Заметим также, что угол θ лежит в плоскости рассеяния. Объекты различной природы показывают качественно сходные зависимости P от θ. Например, в диапазоне углов θ = 70-110°, степень линейной поляризации у многих объектов достигает максимального значения Pmax, хотя амплитуда поляризации и угол рассеяния на котором достигается максимальное значение зависят от природы объекта и его физических и химических свойств. В 1905 г. Николай Умов обнаружил экспериментальным путем обратную корреляцию между максимумом поляризации у объекта (Pmax) и его отражательной способностью A. В литературе этот феномен известен как эффект или закон Умова, согласно которому log(Pmax) линейно изменяется с log(A). Нами обобщен закон Умова на случай малых, субмикронных и микронных частиц (см. цикл работ: (1) Zubko et al., 2017: Reflectance of micron-sized dust particles retrieved with the Umov law. J. Quant. Spectrosc. Radiat. Transfer, 190, 1–6. (2) Zubko et al., 2017: Umov effect in single-scattering dust particles: Effect of irregular shape. Opt. Lett., 42, 1962–1965).

Сразу после заката (незадолго до рассвета), Солнце продолжает освещать воздушное пространство над местом измерений, а следовательно и аэрозоли его заполняющие. По мере того, как Солнце опускается под горизонт, граница тени смещается выше. Таким образом измерения в сумерках позволяют стратифицировать поляризацию пылевых частиц по их высоте. Отметим, что при измерениях в дневное время подобная стратификация невозможна, поскольку происходит интеграция сигнала по всему лучу зрения.

Высота 8 верхней границы тени определяется из выражения

h=R(1–cosγ)/cosγ,

где h - высота верхней границы тени;

R ≈ 6371 км - радиус Земли;

γ - угол между горизонтом и направлением на верхний край Солнечного диска.

Важно подчеркнуть, что высота тени h = 10 км соответствует относительно небольшому погружению Солнца под горизонт, γ ≈ 3.2°. Однако, почти весь аэрозоль сосредоточен в этом атмосферном слое. Одновременно, угол рассеяния увеличивается всего лишь до θ ≈ 93.2°, т.е., остается весьма близким к прямому углу, а значит данная геометрия позволяет проводить надежную оценку Pmax.

Заявленный способ реализуют следующими этапами.

1. Методом численного моделирования изучают эффект Умова у частиц неправильной формы, имеющих морфологию сходную с атмосферными аэрозолями и усредненных по размеру со степенным законом r–n , при значениях показателя степени, как минимум, n = 2.5 и 3. Данная калибровка может быть проведена на основе строгого решения задачи светорассеяния на модельных частицах, воспроизводящих микрофизические свойства частиц пыли их распределение по размеру. В области субмикронных и микронных размеров, распределение пылевых частиц хорошо аппроксимируется степенным законом r–n, при значениях показателя степени n = 2.5 и 3.

По результатам этого формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью, в виде

log(Pmax) ∝ log(A),

где Pmax - максимальное значение степени линейной поляризации солнечного излучения, рассеянного на частицах аэрозоля;

А - отражательная способность частиц аэрозоля.

2. Поляриметр ориентируют вертикально вверх (в зенит).

3. Измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и земля отбрасывает тень на небосклон над точкой размещения измерительного прибора, начиная с момента заката Солнца до момента достижения границей тени высоты 10–15 км. В утренних сумерках измерения проводят в обратном порядке, начиная с высоты тени 10-15 км над точкой измерений. Полученные значения поляризации принимаются примерно равными максимальному значению поляризации Pmax.

Результатом измерений является высотная зависимость степени линейной поляризации. Причем, синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют, соответствующие им углы между горизонтом 4 и направлением на верхний край солнца 7, по которым, с использованием вышеупомянутого выражения вычисляют высоту 8 верхней границы тени, соответствующую конкретному измерению степени линейной поляризации солнечного излучения, что позволяет выявить зависимость степени линейной поляризации от высоты. Которую, в свою очередь, с использованием калибровочной зависимости между степенью линейной поляризации исходного солнечного излучения на частицах аэрозоля и их отражательной способностью интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты его местоположения в атмосфере.

Похожие патенты RU2674560C1

название год авторы номер документа
Способ измерения концентрации аэрозольных частиц в атмосфере 2017
  • Зубко Евгений Сергеевич
  • Павлов Андрей Николаевич
  • Константинов Олег Григорьевич
RU2672188C1
СОЛНЕЧНЫЙ ВЕКТОР-МАГНИТОГРАФ 2009
  • Кожеватов Илья Емельянович
  • Руденчик Евгений Антонович
  • Черагин Николай Петрович
  • Куликова Елена Хусаиновна
RU2406982C1
СПОСОБ РЕГИСТРАЦИИ ВСПЫШЕК НА СОЛНЦЕ И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ 2019
  • Тертышников Александр Васильевич
  • Шрамко Андрей Дмитриевич
  • Писанко Юрий Владимирович
  • Тлатов Андрей Георгиевич
  • Палей Алексей Алексеевич
  • Тертышников Артем Михайлович
  • Грязнов Константин Васильевич
RU2715837C1
СПОСОБ И СИСТЕМА ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ 2015
  • Шишалов Иван Сергеевич
  • Филимонов Андрей Викторович
  • Пархачев Владимир Владимирович
RU2668606C2
Способ определения метеорологической дальности видимости 2018
  • Шайков Михаил Карпович
RU2692822C1
Способ определения фракционного состава угольно-водного аэрозоля 1987
  • Ощепков Сергей Леонидович
  • Никифорова Ольга Игоревна
SU1437746A1
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ В АТМОСФЕРЕ 2014
  • Палей Алексей Алексеевич
  • Писанко Юрий Владимирович
  • Пугачёв Вячеслав Петрович
  • Пугачёва Лариса Николаевна
  • Тертышников Александр Васильевич
  • Шувалов Вячеслав Александрович
  • Голубцова Алла Петровна
RU2581419C1
Способ определения оптической толщины атмосферы 2019
  • Титов Виктор Иванович
  • Баханов Виктор Владимирович
  • Зуйкова Эмма Михайловна
RU2729171C1
Способ дистанционной съемки поверхности планет в солнечном свете, ультрафиолетовой, видимой в ближней инфракрасной областях спектра 1975
  • Шустова Л.Н.
  • Шустов А.В.
SU604425A1
Способ определения характеристик аномалий морской поверхности, обусловленных процессами в приповерхностных слоях океана и атмосферы, по ее оптическим изображениям 2022
  • Баханов Виктор Владимирович
  • Богатов Николай Андреевич
  • Власов Сергей Николаевич
  • Ермошкин Алексей Валерьевич
  • Казаков Василий Иванович
  • Кемарская Ольга Николаевна
  • Майбородюк Геннадий Иванович
  • Титов Виктор Иванович
  • Лебедев Андрей Вадимович
  • Манаков Сергей Александрович
  • Бредихин Владимир Вадимович
  • Шлюгаев Юрий Владимирович
RU2794871C1

Иллюстрации к изобретению RU 2 674 560 C1

Реферат патента 2018 года Способ измерения оптических характеристик атмосферы

Изобретение относится к области метеорологии, а более конкретно к способам определения оптических характеристик атмосферы, и может использоваться, например, для определения оптических параметров аэрозольных частиц в атмосфере. Заявлен способ измерения оптических характеристик атмосферы, включающий регистрацию светового потока, рассеиваемого на частицах аэрозоля, содержащихся в атмосфере. Согласно предложенному решению предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеяного на частицах аэрозоля и их отражательной способностью, в виде

log(Pmax) ∝ log(A),

где Pmax - максимальное значение степени линейной поляризации солнечного излучения, рассеяного на частицах аэрозоля; А - отражательная способность частиц аэрозоля. При этом измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнце не видно из-за горизонта и земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора, в качестве которого используют поляриметр, который в процессе измерений ориентируют в зенит. Причем синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению и выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты. Технический результат - повышение оперативности и достоверности результатов измерений оптических характеристик атмосферы на различных высотах. 3 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 674 560 C1

1. Способ измерения оптических характеристик атмосферы, включающий регистрацию светового потока, рассеиваемого на частицах аэрозоля, содержащихся в атмосфере, отличающийся тем, что предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью, в виде

log(Pmax) ∝ log(A),

где Pmax - максимальное значение степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля;

А - отражательная способность частиц аэрозоля, при этом измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора, в качестве которого используют поляриметр, который в процессе измерений ориентируют в зенит, причем синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению, и выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты.

2. Способ по п.1, отличающийся тем, что калибровочную зависимость формируют методом численного моделирования, для частиц неправильной формы, морфологически сходных с атмосферными аэрозолями и усредненных по размеру со степенным законом r–n, при значениях показателя степени, как минимум, n = 2.5 и 3.

3. Способ по п.1, отличающийся тем, что измерения на закате проводят до достижения тенью высоты 10-15 км над точкой измерений.

4. Способ по п.1, отличающийся тем, что измерения на восходе начинают с высоты тени 10-15 км над точкой измерений.

Документы, цитированные в отчете о поиске Патент 2018 года RU2674560C1

Способ аспирационной оптической спектрометрии аэрозоля 2015
  • Драбенко Вадим Анатольевич
  • Егоров Александр Дмитриевич
  • Галкин Илья Алексеевич
  • Потапова Ирина Александровна
RU2618597C2
Прибор для указания уровня жидкости в герметически закрытых резервуарах 1928
  • Харламов А.А.
SU10844A1
Детектор аэрозолей 1971
  • Корсунский Геннадий Александрович
  • Доманский Виктор Иванович
  • Шкондин Виктор Петрович
  • Назаренко Анатолий Афанасьевич
SU486251A1
Способ определения фракционного состава угольно-водного аэрозоля 1987
  • Ощепков Сергей Леонидович
  • Никифорова Ольга Игоревна
SU1437746A1
Прибор для определения концентрации пыли 1978
  • Клименко Альбина Павловна
  • Королев Виталий Иванович
SU739375A1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЗРАЧНОСТИ АТМОСФЕРЫ 1984
  • Кабанов М.В.
  • Сакерин С.М.
SU1314806A1
US 4525627 A1, 25.06.1985.

RU 2 674 560 C1

Авторы

Зубко Евгений Сергеевич

Павлов Андрей Николаевич

Константинов Олег Григорьевич

Даты

2018-12-11Публикация

2017-12-28Подача