ПОГЛОТИТЕЛЬ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ Российский патент 2018 года по МПК H01Q17/00 

Описание патента на изобретение RU2675780C1

Изобретение относится к элементам электрического оборудования, конкретно - к устройствам, поглощающим излученные антенной электромагнитные волны (ЭМВ) с целью уменьшения отражений при калибровке радиоизмерительных или радиолокационных устройств.

Для измерений и испытаний радиотехнической аппаратуры, излучающей в свободное пространство, широко применяются экранированные помещения или так называемые безэховые камеры (БЭК) (фиг. 1). Для уменьшения отражений от стен и обеспечения в некотором объеме камеры (безэховой зоне) заданного малого уровня отражений, т.е. условий, приближающихся к условиям «свободного пространства», БЭК изнутри облицовывают радиопоглощающим материалом (РПМ) (М.Ю. Мицмахер, В.А. Торгованов Безэховые камеры СВЧ. М.: Радио и связь. 1982.). При этом РПМ для БЭК должны обеспечивать поглощение ЭМВ за счет активных потерь в толще материала, а также быть согласованным со «свободным пространством». Такими качествами в полной мере обладают РПМ в форме пирамид (шипов, конусов) вершинами направленными навстречу электромагнитной волне.

Наиболее близким к предлагаемому РПМ является поглотитель электромагнитного излучения, состоящий из расположенных вплотную и укрепленных основаниями на стенах экранированного помещения одинаковых пирамидообразных тел 1 из пенопласта, пропитанного мелкими частичками электропроводных материалов (Патент №3703755 /ФРГ/, МКИ H0I Р-1/126 - прототип) (фиг. 1, 2).

Данный РПМ не лишен недостатков, ограничивающих его применение. К ним относятся:

- увеличение диффузной составляющей в области высоких частот при углах локации, отличных от зеркального направления;

- невозможность применения в условиях больших плотностей мощности;

- большой вес при увеличении размеров пирамид для низкочастотного диапазона.

Задачей заявляемого технического решения является разработка поглотителя электромагнитного излучения с малым весом, эффективно работающего с большими плотностями мощности в широком диапазоне углов локации.

Техническим результатом, обеспечивающим решение поставленной задачи, является разработанный поглотитель электромагнитного излучения с весом до двух раз меньшим, чем у прототипа, и эффективно поглощающий большие плотности мощности в секторе углов локации 0±75°.

Решение задачи и получение заявленного технического результата достигаются за счет того, что в известном поглотителе электромагнитного излучения, состоящем из расположенных вплотную и укрепленных основаниями на стенах экранированного помещения одинаковых пирамидообразных тел из пенопласта, пропитанного мелкими частичками электропроводных материалов, указанным телам придают форму правильных фрактальных пирамид Серпинского, полученных путем минимум одной итерации последовательного удаления из внутреннего объема (перфорации) пенопластовых сегментов в виде перевернутых на 180° и уменьшенных в 2" раз подобных пирамид (где n - число итераций).

В современной теории антенн, способных работать в широкой полосе частот (А.В. Кашин, А.Ю. Седаков, Е.А. Шорохова. Антенны СВЧ с повышенной полосой пропускания. Антенны, 2010, №7), обращают на себя внимание сверхширокополосные (частотнонезависимые) антенны с коэффициентом перекрытия до нескольких десятков - фрактальные антенны. Фрактальный тип антенн является сравнительно новым и принципиально отличается от известных решений. На сегодняшний день существует несколько видов фрактальных антенн. Наиболее изучена треугольная антенна Серпинского (треугольник Серпинского), схема формирования которой представлена на фиг. 3. Она подобна пяти симметричным вибраторам с треугольными плечами, работающими каждый на своей частоте. Фрактальная антенна Серпинского обладает менее частым и компактным распределением частотных диапазонов (т.е. сеткой частот, на которых антенна может эффективно принимать и излучать электромагнитную энергию), благодаря наличию меньшего числа элементов, резонирующих на длине волны, превышающих их собственные размеры.

Антенна Серпинского больше известна как планарная, выполненная печатным методом на плоской диэлектрической основе, однако, свойство многодиапазонности распространяется и на ее трехмерную конструкцию (А.В. Кашин, А.Ю. Седаков, Е.А. Шорохова. Антенны СВЧ с повышенной полосой пропускания. Вып. Устройства СВЧ и антенные системы. Кн. 2 Моделирование, проектирование и технологии СВЧ-устройств и ФАР. М.: «Радиотехника» 2014. С. 156). В этом случае антенна Серпинского имеет форму правильной пирамиды, которая получается путем минимум одной итерации последовательного удаления из внутреннего объема пенопластовых сегментов в виде перевернутых на 180° и уменьшенных в 2n раз подобных пирамид (где n - число итераций). В образующихся после удаления новых пирамидах снова удаляют пенопластовые сегменты, последовательно повторяя данную процедуру требуемое число итераций (фиг. 4б - одна итерация, 4в - две итерации).

Правильные пирамиды Серпинского имеют в основании правильные треугольники или квадраты. В коротковолновой части диапазона пирамиды с треугольным основанием (тетраэдры) в меньшей степени, чем пирамиды с квадратным основанием (фиг. 5), способствуют синфазному сложению зеркальных лучей, отраженных от наклонных граней РПМ. Перфорация пирамид полостями обеспечивает хорошее согласование РПМ со «свободным пространством», а также эффективное диффузное рассеяние и поглощение энергии независимо от поляризации ЭМВ.

Поясним принцип работы заявляемого технического решения.

Пирамиды Серпинского из полупроводящего материала - пенопласта, пропитанного мелкими частичками электропроводных материалов для высокочастотной части диапазона (длина волны соизмерима с минимальным сегментом), по аналогии с диссипативными рассеивателями, можно рассматривать как согласованные антенны, работающие на прием (В.А. Неганов Д.И Табаков, Г.П. Яровой. Современная теория и практическое применение антенн. М.: «Радиотехника». 2009. С. 138). В этом случае мощность падающего на приемную антенну поля поглощается в нагрузке антенны (внутренняя структура РПМ), а амплитуда рассеянного поля становится пренебрежительно малой.

В отличие от ЭМВ миллиметрового диапазона, к волнам сантиметрового и дециметрового диапазона не применимы законы оптического отражения. Для них так называемые поверхностные волны распространяются во всех направлениях от точки встречи волны с поверхностью пенопласта («Радиоэлектроника в 1968 году». Обзор по материалам иностранной печати. VIII, НИИ ЭИР, М.: 1969. С. 29). Поверхностные волны возбуждают соответствующие токи и обеспечивают связь отдельных сегментов-полостей пирамиды Серпинского, которые подобны резонансным контурам. Одна пирамида может иметь до пяти и более групп таких областей с различной резонансной частотой. Разделение резонансных контуров по областям за счет потери мощности в них обеспечивает эффективное поглощение в еще большем, чем у прототипа, диапазоне углов локации.

Для подтверждения предлагаемых доводов обратимся к известному техническому решению, обеспечивающему снижение эффективной площади рассеяния (ЭПР) полости канала двигателя летательного аппарата за счет диффузного рассеяния энергии ЭМВ без ее поглощения (Способ уменьшения эффективной площади рассеяния канала. Патент США №4148032. 1979 г. НКИ 343-18А). Для достижения заявляемого эффекта уменьшения ЭПР полости используются специальные конструкции стенок, которые, например, могут быть двойными металлическими с разнообразными отверстиями. Существенным преимуществом способа является высокая прочность и термостойкость стенок. Результат данного технического решения - это ослабление до требуемой величины отражений от внутренней поверхности полости, ограниченной металлическим экраном с регулярными отверстиями для широкого диапазона радиоизлучений.

Такого же эффекта можно добиться путем формирования многократного отражения и поглощения (взаимной компенсации) падающих электромагнитных волн по аналогии с принципом построения безэховых камер. В них, в частности, для необходимого ослабления переотраженного сигнала проводят профилирование внутренних поверхностей (стенок камеры). Основная идея профилирования - направить поле, отраженное от металлического экрана в разные стороны, заставляя его многократно переотражаться внутри объема. В большинстве случаев это достигается установкой на поверхностях, ограничивающих внутренний объем полости (камеры), различных рассеивающих конфигураций: клиньев, пирамид и т.д. (М.Ю. Мицмахер, В.А. Торгованов. Безэховые камеры СВЧ. М.: "Радио и связь". 1982. С. 40).

Также известна конструкция радиопоглощающего материала, состоящего из множества дифракционных элементов, находящихся в противофазе (Патент США, кл.343-18, №3307186). Дифракционными элементами являются, например, ребра проволочной трехмерной сетки, длина которых меньше длины волны падающей ЭМВ. Ребра образуют воображаемые тетраэдры или полигональные пирамиды, которые соединены друг с другом у оснований, образуя трехмерную пространственную сетку, толщина которой равна высоте тетраэдров. Вершины тетраэдров и ребра образуют множество точек дифракции ЭМВ, при этом в определенных направлениях дифракционные волны находятся в противофазе друг с другом и в итоге компенсируют сами себя («Радиоэлектроника в 1968 году». Обзор по материалам иностранной печати. VIII, НИИЭИР, М.: 1969. С. 30).

Таким образом, поглотитель электромагнитного излучения на основе фрактальных пирамид Серпинского - это пример дополнительного профилирования и перфорирования РПМ для согласования со «свободным пространством», а также снижения дифракционной составляющей для больших углов падения ЭМВ.

Поглотитель электромагнитного излучения на основе фрактальных пирамид Серпинского работает следующим образом. На РПМ из пенопласта, пропитанного мелкими частичками электропроводных материалов, со стороны вершин падает плоская ЭМВ, которая на диэлектрической полупроводящей поверхности наводит поверхностные волны, распространяющиеся по перфорированным граням в направлении основания пирамиды. При встрече с сегментом-полостью, сравнимым с длиной волны, происходит возбуждение вторичных поверхностных волн, частичное поглощение и переотражение в разных направлениях. При этом мощность падающей волны спадает из-за тепловых потерь при поглощении и компенсируется за счет многократных переотражений. Так как структура имеет большое число полостей, то площадь, возбуждаемая поверхностными волнами, также увеличивается, и поверхностные токи, «затекая» во внутреннюю структуру, увеличивают процесс поглощения.

Для изготовления фрактальных пирамид Серпинского могут быть использованы фаббер-технологии трехмерного прототипирования, позволяющие прецизионно формировать миниатюрные элементы любой сложности (В.И. Слюсарь. Фаббер-технологии: сам себе конструктор и фабрикант. //Конструктор. 2002. №1. С. 5-7.).

Важным преимуществом фрактальных пирамид Серпинского является возможность их применения в конструкции специальных термостойких поглотителей, рассчитанных на большие плотности потока мощности. С этой целью предлагаемый поглотитель может быть снабжен необходимым дополнительным охлаждением, например, за счет принудительной вентиляции полостей внутреннего объема материала.

Существо предлагаемого изобретения поясняется фиг. 6-11, на которых представлены модели РПМ, а также полученные для них результаты численного электродинамического математического моделирования с помощью программы CST Studio Suite (CST help documentation).

На фиг. 6 приведена схема для расчета диаграммы ЭПР металлизированной модели РПМ (вид сверху), состоящей из 6 тетраэдров, внешний вид и размеры которых представлены на фиг. 7.

На фиг. 8 приведена схема для расчета диаграммы ЭПР металлизированной модели РПМ (вид сверху), состоящей из 6 пирамид-тетраэдров Серпинского, вид сбоку и размеры которых представлены на фиг. 9.

Обе модели РПМ имеют одинаковую высоту и основание в форме правильного шестиугольника.

На фиг. 10 и 11 представлены рассчитанные диаграммы ЭПР металлизированной модели РПМ состоящей из 6 обычных тетраэдров (b) и тетраэдров Серпинского (а) на длине волны λ=3,1 см для горизонтальной и вертикальной поляризации электрического поля соответственно.

Анализ диаграмм ЭПР показывает, что металлизированный РПМ из тетраэдров Серпинского в сравнении с металлизированным РПМ из обычных тетраэдров позволяет уменьшить медианные значения ЭПР (σ0,5) на 6,5…6,9 дБ в секторе углов локации 0±75°. Этим подтверждается уменьшение диффузной составляющей в области высоких частот при углах локации, отличных от зеркального направления, а также возможность эффективного поглощения предлагаемой структурой РПМ.

Отметим снижение веса заявляемого поглотителя в форме тетраэдров Серпинского в 2n раз (n - число итераций удаления из внутреннего объема сегментов) по сравнению с известным РПМ, что важно при увеличении размеров пирамид для низкочастотного диапазона длин волн, а также применения материала в условиях больших плотностей мощности с дополнительным охлаждением. По весу тетраэдр Серпинского имеет преимущество перед пирамидой Серпинского с квадратным основанием, объем которой уменьшается с номером n итераций удаления сегментов в 1,6n раз.

Техническим результатом, обеспечивающим решение поставленной задачи, является поглотитель электромагнитного излучения с малым весом для эффективной работы с большими плотностями мощности в широком диапазоне углов локации.

Задача изобретения решена: разработан поглотитель электромагнитного излучения с малым весом, работающий с большими плотностями мощности в широком диапазоне углов локации.

Изобретение не ограничивается вышеизложенным примером его осуществления. Исходя из его схемы, могут быть предусмотрены и другие варианты конструкции, улучшающие поглощающие и рассеивающие характеристики и не выходящие за рамки предмета изобретения.

Предлагаемый поглотитель электромагнитного излучения целесообразно использовать для экранирования помещений в ходе измерений и испытаний радиотехнической аппаратуры.

Похожие патенты RU2675780C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ РАДИОЛОКАЦИОННЫХ ОБЪЕКТОВ 2016
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Громов Андрей Николаевич
  • Ковалев Сергей Владимирович
  • Моряков Станислав Игоревич
  • Нестеров Сергей Михайлович
  • Скородумов Иван Алексеевич
RU2616586C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ РАДИОЛОКАЦИОННЫХ ОБЪЕКТОВ 2017
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Ковалев Сергей Владимирович
  • Моряков Станислав Игоревич
  • Нестеров Сергей Михайлович
  • Скородумов Иван Алексеевич
RU2659765C1
СТРЕЛОВИДНЫЙ ПЕРЕОТРАЖАТЕЛЬ СИГНАЛА 2017
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Громов Андрей Николаевич
  • Ковалев Сергей Владимирович
  • Моряков Станислав Игоревич
  • Скоков Петр Николаевич
  • Трубаев Сергей Николаевич
RU2659812C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ РАДИОЛОКАЦИОННЫХ ОБЪЕКТОВ 2020
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Ковалев Сергей Владимирович
  • Моряков Станислав Игоревич
  • Нестеров Сергей Михайлович
  • Скородумов Иван Алексеевич
RU2756996C2
РАДИОЛОКАЦИОННАЯ АНТЕННА С УМЕНЬШЕННОЙ ЭФФЕКТИВНОЙ ПЛОЩАДЬЮ РАССЕЯНИЯ 2015
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Громов Андрей Николаевич
  • Ковалев Сергей Владимирович
  • Нестеров Сергей Михайлович
  • Олейник Вячеслав Методиевич
  • Скородумов Иван Алексеевич
RU2589250C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ РАДИОЛОКАЦИОННЫХ ОБЪЕКТОВ 2019
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Ковалев Сергей Владимирович
  • Моряков Станислав Игоревич
  • Нестеров Сергей Михайлович
  • Скородумов Иван Алексеевич
  • Слухаева Дарья Андреевна
RU2715991C1
СПОСОБ УВЕЛИЧЕНИЯ ЭФФЕКТИВНОЙ ПЛОЩАДИ РАССЕЯНИЯ РАДИОЛОКАЦИОННЫХ ОБЪЕКТОВ 2017
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Ковалев Сергей Владимирович
  • Моряков Станислав Игоревич
  • Нестеров Сергей Михайлович
  • Олейник Вячеслав Методиевич
  • Скоков Петр Николаевич
  • Скородумов Иван Алексеевич
RU2640321C1
СПОСОБ ПОЛУЧЕНИЯ ДВУМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ОБЪЕКТА ПРИ МНОГОЧАСТОТНОМ ИМПУЛЬСНОМ ЗОНДИРОВАНИИ И ИНВЕРСНОМ СИНТЕЗЕ АПЕРТУРЫ С УЧЕТОМ БЛИЖНЕЙ ЗОНЫ ЛОКАЦИИ 2023
  • Грибков Виталий Сергеевич
  • Ковалёв Сергей Владимирович
  • Моряков Станислав Игоревич
  • Нестеров Сергей Михайлович
  • Скородумов Иван Алексеевич
RU2810725C1
СПОСОБ ПОЛУЧЕНИЯ ДВУМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ОБЪЕКТА ПРИ МНОГОЧАСТОТНОМ ИМПУЛЬСНОМ ЗОНДИРОВАНИИ И ИНВЕРСНОМ СИНТЕЗЕ АПЕРТУРЫ С ОПРЕДЕЛЕНИЕМ ТРЕТЬЕЙ КООРДИНАТЫ ЭЛЕМЕНТОВ ФОРМИРУЕМОГО ИЗОБРАЖЕНИЯ 2019
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Ковалев Сергей Владимирович
  • Моряков Станислав Игоревич
  • Нестеров Сергей Михайлович
  • Скородумов Иван Алексеевич
RU2723706C1
РАДИОЛОКАЦИОННАЯ АНТЕННА С УМЕНЬШЕННОЙ ЭФФЕКТИВНОЙ ПЛОЩАДЬЮ РАССЕЯНИЯ 2013
  • Грибков Алексей Сергеевич
  • Грибков Виталий Сергеевич
  • Казанцев Виктор Федорович
  • Ковалев Сергей Владимирович
  • Нестеров Сергей Михайлович
  • Скородумов Иван Алексеевич
RU2526741C1

Иллюстрации к изобретению RU 2 675 780 C1

Реферат патента 2018 года ПОГЛОТИТЕЛЬ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Изобретение относится к элементам электрического оборудования, поглощающим излученные антенной электромагнитные волны с целью уменьшения отражений при калибровке радиоизмерительных или радиолокационных устройств. Поглотитель электромагнитного излучения представляет собой расположенные вплотную и укрепленные основаниями на стенах экранированного помещения одинаковые пирамидообразные тела из пенопласта, пропитанного мелкими частичками электропроводных материалов. Придание пирамидообразным телам формы правильных фрактальных пирамид Серпинского за счет минимум одной итерации последовательного удаления из внутреннего объема пенопластовых сегментов в виде перевернутых на 180° и уменьшенных в 2n раз подобных пирамид (где n - число итераций). Технический результат заключается в уменьшении веса поглотителя. 11 ил.

Формула изобретения RU 2 675 780 C1

Поглотитель электромагнитного излучения, состоящий из расположенных вплотную и укрепленных основаниями на стенах экранированного помещения одинаковых пирамидообразных тел из пенопласта, пропитанного мелкими частичками электропроводных материалов, отличающийся тем, что пирамидообразные тела выполнены в форме правильных фрактальных пирамид Серпинского, полученных путем минимум одной итерации последовательного удаления из внутреннего объема пенопластовых сегментов в виде перевернутых на 180° и уменьшенных в 2n раз подобных пирамид (где n - число итераций).

Документы, цитированные в отчете о поиске Патент 2018 года RU2675780C1

DE 3703755 A1, 18.08.1988
Агрегат для подогрева, фильтрации и подачи мазута к топкам судовых паровых котлов 1947
  • Козин В.Ф.
SU79720A1
US 2003146866 A1, 07.08.2003
ПОГЛОТИТЕЛЬ ЭЛЕКТРОМАГНИТНЫХ ВОЛН 2008
  • Левадный Лев Николаевич
  • Хохлов Владимир Михайлович
  • Чернет Евгений Олегович
  • Фритче Альбрехт
RU2359374C1

RU 2 675 780 C1

Авторы

Грибков Алексей Сергеевич

Грибков Виталий Сергеевич

Громов Андрей Николаевич

Ковалев Сергей Владимирович

Моряков Станислав Игоревич

Нестеров Сергей Михайлович

Скородумов Иван Алексеевич

Даты

2018-12-24Публикация

2017-12-20Подача