Установка групповая гравиметрическая система капиллярного давления Российский патент 2018 года по МПК G01N15/08 

Описание патента на изобретение RU2676227C1

Изобретение относится к измерительной технике, а именно может быть использовано для определения остаточной водонасыщенности порового пространства в образцах горных пород методом десатурации с использованием полупроницаемых керамических мембран в компьютеризированных станциях геолого-технологических исследований скважин и в петрофизических лабораториях.

Наиболее близким по технической сущности к предлагаемому решению относится гравиметрическая система капиллярного давления GCS-765 (Coretest Systems, inc., США), содержащая одну камеру десатурации, с установленной в ней керамической полупроницаемой мембраной с рабочим давлением до 5 бар, панель управления, с возможностью подключения до 3-х независимых камер десатурации с индивидуальным управлением, потенциальная камера подключается через полимерную трубку с фитинговым соединением с увлажнителем, который в свою очередь подключается к одной из 6 рабочих линий, включающих в себя редуктор с датчиками низкого и высокого давления и манометром, рабочие линии в свою очередь подключены к трем шестиходовым кранам, для выбора рабочего диапазона давлений, 4 линии подключаются к промышленному компрессору для создания низкого давления до 8 бар, 2 линии подключаются к дополнительному баллону с сжиженным гелием, с подключенным к нему редуктором с манометром, для создания высокого давления до 15 бар. (Руководство пользователя, 2001 г).

Недостатком данного устройства является неудобство в управлении, необходимость разбора камеры десатурации для замены полупроницаемой керамической мембраны необходимого рабочего давления в соответствии с техническим заданием для более эффективного и точного процесса дренирования жидкой фазы. Конструкция используемых редукторов содержит мембраны, которые скидывают избыточное давление в атмосферу, тем самым увеличивают расход воздуха на линии низкого давления и расход сжиженного гелия на линии высокого давления, что приводит к необходимости частого замена баллона с сжиженным гелием.

Техническая проблема, стоящая при создании изобретения, состоит в необходимости увеличения производительности устройства, упрощение схемы управления, повышении безопасности, расширении функциональных возможностей и снижение сопутствующих затрат.

Техническим результатом изобретения является разработка новой конструкции устройства с возможностью одновременного определения остаточной водонасыщенности порового пространства в образцах горных пород методом десатурации с использованием полупроницаемых мембран различного рабочего давления, отсутствие необходимости постоянных демонтажных работ, упрощение схемы управления, повышение безопасности работы устройства.

Поставленная техническая проблема и технический результат достигаются тем, что установка групповая гравиметрическая система капиллярного давления содержит камеры десатурации, резервный компрессор, бустер, ресивер, увлажнители газа, каждая камера десатурации представляет собой емкость с крышкой, с установленной внутри керамической полупроницаемой мембраной, на поверхность которой укладывается фильтровальная бумага для улучшения контакта между ней и образцом керна, при чем керамические полупроницаемые мембраны имеют различное рабочее давление и выбираются в зависимости от проницаемости образцов керна, вход каждой камеры десатурации соединен с индивидуальными датчиком низкого давления через отсечной кран и датчиком высокого давления и оснащен индивидуальным редуктором с манометром, резервный компрессор, установлен на линии низкого давления, бустер и ресивер, оснащенный дренажным клапаном, установлены на линии высокого давления, увлажнители газа, расположенные перед камерами десатурации, установлены на линии низкого и линии высокого давлений соответственно, при этом линия низкого давления оснащена перед резервным компрессором отсечным и обратными клапанами и на входе соединена с магистральным компрессором, линия высокого давления, оснащенная перед бустером и ресивером редукторами с манометрами, на входе после резервного компрессора врезана в линию низкого давления, а на выходе линия низкого и линия высокого давлений через многокамерные разветвители, подключены к индивидуальным редукторам с манометрами, к которым в свою очередь подключены индивидуальные датчики низкого и высокого давлений каждой камеры десатурации, при этом каждый многокамерный разветвитель соединяет между собой камеры десатурации с одинаковым рабочим давлением.

На фиг. 1 изображена схема заявляемой установки групповой гравиметрической системы капиллярного давления.

На фиг. 2 изображена схема камеры десатурации.

Установка групповая гравиметрическая система капиллярного давления (Фиг. 1) содержит камеры десатурации 1, резервный компрессор 2, бустер 3, ресивер 4, увлажнители газа 5. Вход каждой камеры десатурации 1 соединен с индивидуальными датчиком низкого давления 6 через отсечной кран 7, датчиком высокого давления 8 и оснащен индивидуальным редуктором с манометром 9. Резервный компрессор 2, установлен на линии низкого давления 10. Бустер 3 и ресивер 4 установлены на линии высокого давления 11. Ресивер 4 оснащен дренажным клапаном 12. Увлажнители газа 5 расположены перед камерами десатурации 1 и установлены на линии низкого, и линии высокого давлений 10, 11 соответственно. Линия низкого давления 10 оснащена перед резервным компрессором 2, отсечным краном 13 и обратным клапаном 14. На входе линия низкого давления 10 соединена с магистральным компрессором (на фиг. не показано). Линия высокого давления 11 оснащена перед бустером 3 и ресивером 4 редукторами с манометрами 15. На входе линия высокого давления 11 после резервного компрессора 2 врезана в линию низкого давления 11, На выходе линия низкого 10 и линия высокого давлений 11, через многокамерные разветвители 16, подключены к индивидуальным редукторам с манометрами 9, к которым в свою очередь подключены индивидуальные датчики низкого 6 и высокого 8 давлений каждой камеры десатурации 1, При этом каждый многокамерный разветвитель 16 соединяет между собой камеры десатурации 1 с рабочей линией низкого 10 давления или высокого 11 давления.

Каждая камера десатурации 1 (Фиг. 2) представляет собой емкость с крышкой 17, с установленной внутри керамической полупроницаемой мембраной 18, на поверхность которой укладывается фильтровальная бумага 19 для улучшения контакта между ней и образцом керна 20, при чем мембраны 18 имеют различное рабочее давление и выбираются в зависимости от проницаемости образцов керна 20. Камеры десатурации изготовлены из нержавеющей стали. Все соединения выполнены цанговыми композитными соединениями, трубки линии низкого давления выполнены из полиуретановые материалов, трубки линии высокого давления выполнены из тефлона.

Устройство работает следующим образом.

В камеру десатурации 1 устанавливают полупроницаемую керамическую мембрану 18 необходимого рабочего давления. После этого в камеру десатурации 1 заливают модель пластовой воды на уровень 0,5 мм и подключают вакуумную линию (на фиг. 1 не показана). В течении 3-4 часов в камере десатурации 1 происходит процесс вакуумирования. По окончании вакуумирования излишки модели пластовой воды удаляют таким образом, чтобы осталось 0,1 мм на поверхности полупроницаемой керамической мембраны 18, затем на поверхность полупроницаемой керамической мембраны укладывают фильтровальную бумагу 19 для улучшения контакта между ней и образцом керна. Насыщенные моделью пластовой воды образцы керна на 100%, взвешивают и выкладывают последовательно в камеру десатурации (не превышая 30 шт., до 70% от площади мембраны). Подключают вакуумную линию и начинают процесс вакуумирования (ГОСТ 26450.1-85 в зависимости от проницаемости образца керна). По завершению процесса вакуумирования отключают вакуумную линию и подключают необходимую линию низкого 10 либо высокого 11 давления, в зависимости от текущей лабораторной задачи. С помощью редуктора 9 выставляют необходимое давление на основании лабораторной задачи, затем плавно открывают кран подачи сжатого воздуха (на фиг. 2 не обозначен) в камеру десатурации 1 примерно на 1/3 таким образом, чтобы давление в камере десатурации 1 поднималось постепенно. Резкое поднятие давления разрушит полупроницаемую мембрану. После набора давления открывают кран подачи воздуха на полное сечение, убедившись в том, что давление в камере десатурации 1 стабилизировалось, открывают дренажный кран (на фиг. 2 не обозначен), расположенный внизу камеры десатурации 1, предварительно подставив емкость для сбора вытесняемой воды (на фиг. 2 не обозначен). Спустя 1-3 суток, после того как прекратится интенсивное вытеснение модели пластовой воды, вместо емкости подставляют градуированную пробирку. Спустя 10-30 суток, в зависимости от проницаемости и количества образцов, процесс дренирования прекратится. По завершению процесса дренирования перекрывают дренажную линию, линию подачи сжатого воздуха (на фиг. 1 не обозначен) и отсоединяют линию низкого 10 или линию высокого 11 давлений, в зависимости от лабораторной задачи. После этого плавно открывают кран подачи сжатого воздуха (на фиг. 2 не обозначен) примерно на 1/3 сечения, резкий сброс давления может повредить мембрану. Достают исследуемые образцы керна для взвешивания и измерения удельного электрического сопротивления. После повторят процедуру, пошагово увеличивая значение давления на основании технического задания.

Техническая особенность данной установки заключается в упрощенной замене керамических полупроницаемых мембран установленных в камерах дессатурации и возможности быстрого переключения необходимых камер дессатурации на необходимую линию низкого или высокого давления.

Пример осуществления измерения на заявляемой установке:

Пример 1:

На основании технического задания, необходимо получить кривую капиллярного давления на 9 точках с давлением 0,07; 0,10; 0,21; 0,41; 0,83; 1,65; 3,31; 6,21; 12,41 бар.

В камеру десатурации 1 устанавливают полупроницаемую керамическую мембрану 18 с рабочим давлением 1 бар. После этого в камеру десатурации 1 заливают модель пластовой воды на уровень 0,5 мм и подключают вакуумную линию (на фиг. 1 не показана). В течении 3-4 часов в камере десатурации 1 происходит процесс вакуумирования. По окончании вакуумирования излишки модели пластовой воды удаляют таким образом, чтобы осталось 0,1 мм на поверхности полупроницаемой керамической мембраны 18, затем на поверхность полупроницаемой керамической мембраны укладывают фильтровальную бумагу 19 для улучшения контакта между ней и образцом керна. Насыщенные моделью пластовой воды образцы керна на 100%, взвешивают и выкладывают последовательно в камеру десатурации (не превышая 30 шт., до 70% от площади мембраны). Подключают вакуумную линию и начинают процесс вакуумирования (ГОСТ 26450.1-85 в зависимости от проницаемости образца керна). По завершению процесса вакуумирования отключают вакуумную линию и подключают необходимую линию низкого 10 давления. С помощью редуктора 9 выставляют первую точку давления 0,07 бар, затем плавно открывают кран подачи сжатого воздуха (на фиг. 2 не обозначен) в камеру десатурации 1 примерно на 1/3 таким образом, чтобы давление в камере десатурации 1 поднималось постепенно. Резкое поднятие давления разрушит полупроницаемую мембрану. После набора давления открывают кран подачи воздуха на полное сечение, убедившись в том, что давление в камере десатурации 1 стабилизировалось, открывают дренажный кран (на фиг. 2 не обозначен), расположенный внизу камеры десатурации 1, предварительно подставив емкость для сбора вытесняемой воды (на фиг. 2 не обозначен). Спустя 1-3 суток, после того как прекратится интенсивное вытеснение модели пластовой воды, вместо емкости подставляют градуированную пробирку. Спустя 10-30 суток, в зависимости от проницаемости и количества образцов, процесс дренирования прекратится. По завершению процесса дренирования перекрывают дренажную линию, линию подачи сжатого воздуха (на фиг. 1 не обозначен) и отсоединяют линию низкого 10 давления. После этого плавно открывают кран подачи сжатого воздуха (на фиг. 2 не обозначен) примерно на 1/3 сечения, резкий сброс давления может повредить мембрану. Достают исследуемые образцы керна для взвешивания и измерения удельного электрического сопротивления. После повторят процедуру эксперимента, пошагово увеличивая значение давления, не превышая рабочее давление мембраны 1 бар, в текущей камере десатурации. в камере десатурации с установленной полупроницаемой керамической мембраной с рабочим давлением 1 бар проводят эксперименты с давлениями 0,07; 0,10; 0,41; 0,83 бар. По окончании экспериментов с рабочим давлением до 1 бар, исследуемые образцы перемещаются в камеру десатурации с установленной полупроницаемой керамической мембраной с рабочим давлением 3 бар и проводят эксперимент с давлением 1,65 бар. По окончании эксперимента с рабочим давлением до 3 бар, исследуемые образцы перемещаются в камеру десатурации с установленной полупроницаемой керамической мембраной с рабочим давлением 5 бар и проводят эксперимент с давлением 3,31 бар. По окончании эксперимента с рабочим давлением до 5 бар, исследуемые образцы перемещаются в камеру десатурации с установленной полупроницаемой керамической мембраной с рабочим давлением 15 бар и проводят эксперимент с давлением 6,21; 12,41 бар. По окончании экспериментов удаляют фильтровальную бумагу и на поверхность полупроницаемой керамической мембраны заливают дистиллированную воду, для поддержания насыщенности полупроницаемой керамической мембраны, полученные результаты обрабатываются и передаются заказчику.

На основании технического задания количество точек при проведении эксперимента, и значения необходимого давления может быть изменено заказчиком в большую или меньшую сторону, в зависимости необходимого количества полученных результатов. Наличие заранее установленных полупроницаемых керамических мембран различного рабочего давления и выполнение экспериментов с рабочим давлением полупроницаемой керамической мембраны наиболее приближенному к заданному необходимому давлению в эксперименте позволяет провести эксперимент в более короткий промежуток времени и получить наиболее точные результаты экспериментов.

Пример 2:

На основании технического задания, необходимо получить остаточную водонасыщенность на образцах керна при далвении 12,41 бар, при максимальной загрузке 13и камер дессатурации.

Техническая особенность данной установки заключается в упрощенной замене керамических полупроницаемых мембран установленных в камерах дессатурации и возможности быстрого переключения необходимых камер дессатурации на необходимую линию низкого или высокого давления.

Для данного вида исследования необходимо установить полупроницаемые керамические мембраны с рабочим давлением 15 бар во все камеры десатурации и подключить к линии высокого давления все камеры десатурации. Замена полупроницаемой керамической мембраны проходит путем откручивания от верхней части камеры десатурации удерживающих болтов и снятия крышки корпуса. Переключение камер десатурации происходит путем присоединения многокамерных разветвителей 16 к рабочей линии высокого 11 давления с помощью цангового соединения.

В камеры десатурации 1 устанавливают полупроницаемые керамические мембраны 18 с рабочим давлением 15 бар. После этого в камеры десатурации 1 заливают модель пластовой воды на уровень 0,5 мм и подключают вакуумную линию (на фиг. 1 не показана). В течении 3-4 часов в камерах десатурации 1 происходит процесс вакуумирования. По окончании вакуумирования излишки модели пластовой воды удаляют таким образом, чтобы осталось 0,1 мм на поверхности полупроницаемой керамической мембраны 18, затем на поверхность полупроницаемых керамических мембран укладывают фильтровальную бумагу 19 для улучшения контакта между ней и образцом керна. Насыщенные моделью пластовой воды образцы керна на 100%, взвешивают и выкладывают последовательно в камеры десатурации (не превышая 30 шт., до 70% от площади мембраны). Подключают вакуумную линию и начинают процесс вакуумирования (ГОСТ 26450.1-85 в зависимости от проницаемости образца керна). По завершению процесса вакуумирования отключают вакуумную линию и подключают линию высокого 11 давления. С помощью редуктора 9 выставляют начальную точку давления 3 бар, затем плавно открывают краны подачи сжатого воздуха (на фиг. 2 не обозначен) в камеры десатурации 1 примерно на 1/3 таким образом, чтобы давление в камерах десатурации 1 поднималось постепенно. Резкое поднятие давления разрушит полупроницаемую мембрану. После набора давления открывают краны подачи воздуха на полное сечение, убедившись в том, что давление в камерах десатурации 1 стабилизировалось, открывают дренажные краны (на фиг. 2 не обозначен), расположенные внизу камер десатурации 1, предварительно подставив емкости для сбора вытесняемой воды (на фиг. 2 не обозначен). Спустя 1-3 суток, после того как прекратится интенсивное вытеснение модели пластовой воды, с помощью редуктора 9 выставляют промежуточную точку давления 6 бар. По истечению 1-3 суток, после того как прекратится интенсивное вытеснение модели пластовой воды, с помощью редуктора 9 выставляют конечную точку давления 12,41 бар. Спустя 10-30 суток, в зависимости от проницаемости и количества образцов, процесс дренирования прекратится. По завершению процесса дренирования перекрывают дренажные линии, линии подачи сжатого воздуха (на фиг. 1 не обозначен) и отсоединяют линию высокого 11 давления. После этого плавно открывают краны подачи сжатого воздуха (на фиг. 2 не обозначен) примерно на 1/3 сечения, резкий сброс давления может повредить мембрану. Достают исследуемые образцы керна для взвешивания и измерения удельного электрического сопротивления. По окончании экспериментов удаляют фильтровальную бумагу и на поверхности полупроницаемых керамических мембран заливают дистиллированную воду, для поддержания насыщенности полупроницаемых керамических мембран, полученные результаты обрабатываются и передаются заказчику.

Похожие патенты RU2676227C1

название год авторы номер документа
КАПИЛЛЯРИМЕТР ДЛЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ В БАРИЧЕСКИХ УСЛОВИЯХ 2016
  • Гильманов Ян Ирекович
  • Саломатин Евгений Николаевич
  • Бородин Дмитрий Александрович
RU2643203C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ОБРАЗЦОВ ГОРНЫХ ПОРОД 2007
  • Афиногенов Юрий Алексеевич
RU2343281C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РАСПРЕДЕЛЕНИЯ ПОР ПО РАЗМЕРАМ 2000
  • Гафаров Ш.А.
  • Целиковский О.И.
  • Салех Я.Х.
RU2166747C1
Способ определения упругих свойств горных пород различной насыщенности образцов керна газовых месторождений 2021
  • Кудымов Алексей Юрьевич
  • Серкин Максим Филитерович
  • Шульга Роман Сергеевич
  • Гильманов Ян Ирекович
  • Павлов Валерий Анатольевич
RU2781042C1
СПОСОБ ОБОГАЩЕНИЯ ГАЗОВОЙ СМЕСИ КИСЛОРОДОМ 1991
  • Ивлиев Валерий Александрович
  • Нагорный Ростислав Николаевич
  • Тиракьян Александр Степанович
RU2048176C1
Устройство для измерения водонасыщенности пористых материалов 1983
  • Ковалев Александр Георгиевич
  • Кузнецов Виктор Владимирович
  • Меркулов Игорь Львович
  • Морозов Владимир Дмитриевич
  • Покровский Всеволод Вячеславович
  • Шитикова Клавдия Тимофеевна
  • Юдина Лариса Евгеньевна
SU1183868A1
ВЕТРОСИЛОВАЯ ЭНЕРГОУСТАНОВКА 2023
  • Михайлов Владимир Викторович
RU2811626C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЭФФЕКТИВНОЙ ПОРИСТОСТИ НА ОБРАЗЦАХ КЕРНА 2011
  • Индрупский Илья Михайлович
  • Коваленко Казимир Викторович
  • Кожевников Дмитрий Александрович
  • Закиров Сумбат Набиевич
RU2483291C1
Автоматизированная линия вакуумной пропитки пищевых продуктов и способ обработки продуктов, реализованный в ней 2019
  • Козырин Александр Константинович
RU2744135C2
УСТРОЙСТВО для ОБЛЕГЧЕНИЯ ДЕЯТЕЛЬНОСТИ СЕРДЦА 1972
  • Г. Ф. Романов, В. Г. Барвынь, К. М. Овс Нников, В. И. Головизнин,
  • Л. М. Попов, Ю. А. Перимов А. А. Лаптев
SU329892A1

Иллюстрации к изобретению RU 2 676 227 C1

Реферат патента 2018 года Установка групповая гравиметрическая система капиллярного давления

Изобретение относится к измерительной технике, а именно может быть использовано для определения остаточной водонасыщенности порового пространства в образцах горных пород методом десатурации с использованием полупроницаемых керамических мембран в компьютеризированных станциях геолого-технологических исследований скважин и в петрофизических лабораториях. Установка групповая гравиметрическая система капиллярного давления содержит камеры десатурации 1, резервный компрессор 2, бустер 3, ресивер 4, увлажнители газа 5. Вход каждой камеры десатурации 1 соединен с индивидуальным датчиком низкого давления 6 через отсечной кран 7, датчиком высокого давления 8 и оснащен индивидуальным редуктором с манометром 9. Резервный компрессор 2 установлен на линии низкого давления 10. Бустер 3 и ресивер 4 установлены на линии высокого давления 11. Ресивер 4 оснащен дренажным клапаном 12. Увлажнители газа 5 расположены перед камерами десатурации 1 и установлены на линии низкого и линии высокого давлений 10, 11 соответственно. Линия низкого давления 10 оснащена перед резервным компрессором 2, отсечным краном 13 и обратным клапаном 14. На входе линия низкого давления 10 соединена с магистральным компрессором. Линия высокого давления 11 оснащена перед бустером 3 и ресивером 4 редукторами с манометрами 15. На входе линия высокого давления 11 после резервного компрессора 2 врезана в линию низкого давления 11. На выходе линия низкого 10 и линия высокого давлений 11, через многокамерные разветвители 16, подключены к индивидуальным редукторам с манометрами 9, к которым в свою очередь подключены индивидуальные датчики низкого 6 и высокого 8 давлений каждой камеры десатурации 1. При этом каждый многокамерный разветвитель 16 соединяет между собой камеры десатурации 1 с рабочей линией низкого 10 давления или высокого 11 давления. Каждая камера десатурации 1 представляет собой емкость с крышкой 17, с установленной внутри керамической полупроницаемой мембраной 18, на поверхность которой укладывается фильтровальная бумага 19 для улучшения контакта между ней и образцом керна 20, причем мембраны 18 имеют различное рабочее давление и выбираются в зависимости от проницаемости образцов керна 20. Камеры десатурации изготовлены из нержавеющей стали. Все соединения выполнены цанговыми композитными соединениями, трубки линии низкого давления выполнены из полиуретановых материалов, трубки линии высокого давления выполнены из тефлона. Технический результат - обеспечение возможности одновременного определения остаточной водонасыщенности порового пространства в образцах горных пород методом десатурации с использованием полупроницаемых мембран различного рабочего давления, отсутствие необходимости постоянных демонтажных работ, упрощение схемы управления, повышение безопасности работы устройства. 2 ил.

Формула изобретения RU 2 676 227 C1

Установка групповая гравиметрическая система капиллярного давления содержит камеры десатурации, резервный компрессор, бустер, ресивер, увлажнители газа, каждая камера десатурации представляет собой емкость с крышкой, с установленной внутри керамической полупроницаемой мембраной, на поверхность которой укладывается фильтровальная бумага для улучшения контакта между ней и образцом керна, причем керамические полупроницаемые мембраны имеют различное рабочее давление и выбираются в зависимости от проницаемости образцов керна, вход каждой камеры десатурации соединен с индивидуальными датчиком низкого давления через отсечной кран и датчиком высокого давления и оснащен индивидуальным редуктором с манометром, резервный компрессор установлен на линии низкого давления, бустер и ресивер, оснащенный дренажным клапаном, установлены на линии высокого давления, увлажнители газа, расположенные перед камерами десатурации, установлены на линии низкого и линии высокого давлений соответственно, при этом линия низкого давления оснащена перед резервным компрессором отсечным и обратными клапанами и на входе соединена с магистральным компрессором, линия высокого давления, оснащенная перед бустером и ресивером редукторами с манометрами, на входе после резервного компрессора врезана в линию низкого давления, а на выходе линия низкого и линия высокого давлений через многокамерные разветвители подключены к индивидуальным редукторам с манометрами, к которым в свою очередь подключены индивидуальные датчики низкого и высокого давлений каждой камеры десатурации, при этом каждый многокамерный разветвитель соединяет между собой камеры десатурации с одинаковым рабочим давлением.

Документы, цитированные в отчете о поиске Патент 2018 года RU2676227C1

RU 94018918 A1, 27.01.1996
Устройство для исследования процесса капиллярного вытеснения нефти из образца породы водой 1978
  • Лискевич Евгений Иванович
  • Фещук Орест Васильевич
  • Николаенко Николай Андреевич
  • Гнатюк Роман Алексеевич
  • Склярская Лилия Борисовна
SU791949A1
КОПИРУЮЩЕЕ УСТРОЙСТВО К СУЧКОРЕЗНОЙ МАШИНЕ ФРЕЗЕРНОГО ТИПА 0
SU172147A1
Способ определения капиллярного давления 1990
  • Даниленко Виталий Арсеньевич
  • Иванов Владимир Владимирович
  • Пилип Ярослав Андреевич
SU1742680A1
Устройство для исследования процесса капилярного вытеснения нефти из образца породы водой 1973
  • Багов Мурат Схатчериевич
  • Кузьмичев Дмитрий Нестерович
  • Вольтерс Галина Леонидовна
SU515973A1
Приспособление навигационных двигателях для охлаждения глушителя (сборной выхлопной трубы) с оболочкой, через которую проходит ток охлаждающего воздуха 1926
  • Г. Юнкерс
SU5137A1
US 5079948 A, 14.01.1992.

RU 2 676 227 C1

Авторы

Гудыма Виталий Анатольевич

Зимин Виталий Сергеевич

Алиев Мурад Мехти-Оглы

Даты

2018-12-26Публикация

2018-01-10Подача