Изобретение относится к электроэнергетике и может быть использована для контроля состояния воздушных линий электропередачи (ВЛЭП), а именно измерения гололедно-ветровых нагрузок и мониторинга температурного режима эксплуатации.
Известны способ обнаружения гололеда и «пляски» проводов на воздушных линиях электропередачи (патент на изобретение RU 2016450 С1; МПК H02G 7/14, H02G 7/16; 15.07.1994) и устройство для его реализации, содержащее две антенны, располагаемые в начале и середине контролируемого пролета. Поскольку расстояние от антенны, находящейся в начале пролета, до высоковольтных проводов практически неизменно, а расстояние от второй антенны до высоковольтных проводов определяется мерой их провисания (клиренсом), то отношение потенциалов, наведенных на антеннах, позволяет однозначно фиксировать наличие гололеда.
К причинам, препятствующим достижению заданного технического результата, относятся:
1) относительно низкая точность измерения гололедной нагрузки по причине погрешности, вносимой искажением электрического поля из-за влияния земли, линейной опоры, изменения метеообстановки, намерзаний на самих антеннах;
2) ограниченная достоверность измерительной информации, вызванная недооценкой явления неравномерного распределения гололедных отложений по проводам ВЛЭП, что объясняется принципиальной невозможностью регистрации провисания каждого фазного провода по отдельности.
Наиболее близким по технической сущности устройством является система контроля состояния линий электропередачи, основанная на идентификации изображения оптической мишени и эталонном измерении (патент на изобретение CN 202676156 U, МПК GO1C 5/00, GO1C 11/00, G01B 11/26; 16.01.2013), состоящая из закрепленной на проводе оптической мишени, видеокамеры, установленной на опоре и подключенной к блоку обработки информации, а также компьютерной системы сбора и анализа данных, размещенной на удаленном центре мониторинга. Анализируя посредством видеорегистрации положения мишени отклонение величины клиренса линии от эталонного значения, система определяет гололедно-ветровую нагрузку на провод или его нагрев.
Причиной, препятствующей достижению заданного технического результата, является ограниченная точность предоставляемой системой измерительной информации, что объясняется возможностью регистрации провисания и, как следствие, обледенения только одного провода, в то время как гололедные муфты на остальных проводах трехфазной ВЛЭП могут иметь толщину, отличную от измеренной, по причине неравномерного распределения гололедных масс на контролируемом участке линии.
В этой связи важной задачей является создание устройства, позволяющего повысить точность определения механических нагрузок на ВЛЭП при гололедно-ветровом воздействии.
Техническим результатом является повышение точности предоставляемой оператору ВЛЭП количественной оценки состояния линии в период гололедно-ветрового воздействия.
Технический результат достигается тем, что устройство для контроля состояния воздушных линий электропередачи состоит из закрепленной на проводе оптической мишени, видеокамеры, установленной на опоре и подключенной к блоку обработки информации, компьютерной системы сбора и анализа данных, размещенной на удаленном центре мониторинга, причем содержит дополнительную видеокамеру, при этом видеокамеры оснащены устройством стабилизации горизонтального положения, противоположно направлены и ориентированы на мишени, закрепленные на каждом приходящем и отходящем проводе, а также метеостанцию, установленную на стойке опоры ВЛЭП, причем дополнительная видеокамера и метеостанция также подключены к блоку обработки информации.
Введение в предлагаемое устройство дополнительной видеокамеры и оптических мишеней на каждом приходящем и отходящем проводе делает возможным измерение провисания и соответствующего обледенения отдельных проводов, что позволяет выполнять высокоточные измерения действующей на линию гололедной нагрузки и деформации линейной опоры с учетом неравномерности распределения отложений по проводам и смежным пролетам; при этом введение устройства стабилизации повышает точность измерений путем установки противоположно направленных видеокамер в строго горизонтальном положении, исключая погрешность от их отклонения, а метеостанция создает условия для точного определения скорости и направления ветра с целью расчета действующих на провода и опору ветровых нагрузок и углов отклонения проводов.
Указанные отличия позволяют существенно повысить точность предоставляемой оператору ВЛЭП количественной оценки состояния линии в период гололедно-ветрового воздействия.
На чертеже представлена функциональная схема устройства для контроля состояния воздушных линий электропередачи.
Устройство содержит оптические мишени 1, закрепленные на каждом приходящем и отходящем проводе и необходимые для идентификации изменения провисания проводов, установленные на линейной опоре, противоположно направленные видеокамеры 2, регистрирующие положение мишеней 1 в двух координатах, а также размещенную на стойке опоры ВЛЭП метеостанцию 3 для расчета действующих на провода и опору ветровых нагрузок и углов отклонения проводов.
Выходы видеокамер 2 и метеостанции 3 соединены с входом блока обработки информации 4, связанного с компьютерной системой сбора и анализа данных 5, размещенной на удаленном центре мониторинга, посредством беспроводного канала связи.
Противоположно направленные видеокамеры 2 оснащены устройством стабилизации 6, устраняющем их отклонение от горизонтального положения.
Устройство работает следующим образом. Смещение оптических мишеней 1, закрепленных на каждом приходящем и отходящем проводе, под действием гололедно-ветровых нагрузок регистрируется противоположно направленными видеокамерами 2, горизонтальные девиации которых устраняются действием устройства стабилизации 6. Данные видеорегистрации вместе с показаниями метеостанции 3 поступают в блок обработки информации 4. Полученные значения скорости и направления ветра используются блоком обработки информации 4 для вычисления возможных отклонений проводов под действием ветрового давления, что необходимо для локализации изображений оптических мишеней 1 на видеокадрах. Далее блоком обработки информации 4 выполняется попиксельное сканирование соответствующих областей видеокадров и вычисление точных координат оптических мишеней 1 с последующим пересчетом полученных значений в координаты точек максимального провисания каждого приходящего и отходящего провода. На основе этих данных блок обработки информации 4 рассчитывает соответствующие размеры гололедных муфт, а также вызванные текущим обледенением и ветровым давлением механические нагрузки, которым подвергаются провода и линейная опора, после чего посредством беспроводного канала связи передает полученную измерительную информацию на компьютерную систему сбора и анализа данных 5. Сопоставляя полученные данные с пороговыми значениями, компьютерная система сбора и анализа данных 5 сигнализирует о возможности обрыва проводов, разрушения опоры или начале трещинообразования в материале стойки. Помимо перечисленного при отсутствии гололедных отложений информация о провисании проводов на контролируемом участке ВЛЭП позволяет компьютерной системе сбора и анализа данных 5 диагностировать нарушение температурного режима эксплуатации (перегрев) линии в случае передачи мощности, превышающей ее пропускную способность.
Таким образом, заявленное устройство, содержащее оптические мишени 1 на каждом приходящем и отходящем проводе, противоположно направленные видеокамеры 2, установленные на линейной опоре и совмещенные с устройством стабилизации горизонтального положения 6, а также метеостанцию 3, размещенную на стойке опоры ВЛЭП, предоставляет достаточно точную и полную информацию о текущем состоянии воздушной линии электропередачи.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА КОНТРОЛЯ ГОЛОЛЁДНЫХ НАГРУЗОК НА ПРОВОДА ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ | 2017 |
|
RU2658344C1 |
Способ удаления льда и гололедных отложений с электрических проводов и грозозащитных тросов воздушной линии электропередачи | 2020 |
|
RU2769171C1 |
Устройство для измерения гололедной и ветровой нагрузок на воздушных линиях электропередачи | 2020 |
|
RU2740784C1 |
ОПОРА ДЛЯ ВОЗДУШНОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧ ВЫСОКОГО И СВЕРХВЫСОКОГО НАПРЯЖЕНИЯ | 2007 |
|
RU2365010C1 |
Способ регистрации гололедно-ветровой нагрузки и пляски проводов на воздушных линиях электропередачи и устройство для его осуществления | 2020 |
|
RU2740632C1 |
СИСТЕМА ОХРАНЫ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ | 2013 |
|
RU2536429C1 |
Способ и устройство бесконтактного дистанционного контроля технического состояния высоковольтных линейных изоляторов воздушных линий электропередач | 2020 |
|
RU2753811C1 |
Автоматизированная система контроля веса проводов контактной сети железной дороги | 2024 |
|
RU2823373C1 |
СИСТЕМА МЕТЕОМОНИТОРИНГА ДЛЯ ПРОГНОЗИРОВАНИЯ ВЕРОЯТНОСТИ ПОВРЕЖДЕНИЯ ЭЛЕКТРОСЕТЕВОГО ОБОРУДОВАНИЯ И ОЦЕНКИ ПРОВЕДЕНИЯ ПРЕДУПРЕЖДАЮЩИХ И ВОССТАНОВИТЕЛЬНЫХ РАБОТ | 2018 |
|
RU2676889C1 |
СПОСОБ ПРОВЕДЕНИЯ МЕТЕОМОНИТОРИНГА ДЛЯ ПРОГНОЗИРОВАНИЯ ВЕРОЯТНОСТИ ПОВРЕЖДЕНИЯ ЭЛЕКТРОСЕТЕВОГО ОБОРУДОВАНИЯ | 2018 |
|
RU2675655C1 |
Изобретение относится к электроэнергетике и может быть использовано для контроля состояния воздушных линий электропередачи (ВЛЭП), а именно измерения гололедно-ветровых нагрузок и мониторинга температурного режима эксплуатации. Заявленное устройство для контроля состояния воздушных линий электропередачи состоит из закрепленной на проводе оптической мишени, видеокамеры, установленной на опоре и подключенной к блоку обработки информации, компьютерной системы сбора и анализа данных, размещенной на удаленном центре мониторинга. Причем устройство содержит дополнительную видеокамеру. При этом указанные видеокамеры оснащены устройством стабилизации горизонтального положения, противоположно направлены и ориентированы на мишени, закрепленные на каждом приходящем и отходящем проводе, а также метеостанцию, установленную на стойке опоры ВЛЭП. Дополнительная видеокамера и метеостанция также подключены к блоку обработки информации. Технический результат - повышение точности предоставляемой оператору ВЛЭП количественной оценки состояния линии в период гололедно-ветрового воздействия. 1 ил.
Устройство для контроля состояния воздушных линий электропередачи (ВЛЭП), состоящее из закрепленной на проводе оптической мишени, видеокамеры, установленной на опоре и подключенной к блоку обработки информации, компьютерной системы сбора и анализа данных, размещенной на удаленном центре мониторинга, отличающееся тем, что содержит дополнительную видеокамеру, при этом видеокамеры оснащены устройством стабилизации горизонтального положения, противоположно направлены и ориентированы на мишени, закрепленные на каждом приходящем и отходящем проводе, а также метеостанцию, установленную на стойке опоры ВЛЭП, причем дополнительная видеокамера и метеостанция также подключены к блоку обработки информации.
CN 202676156 U, 16.01.2013 | |||
US 20160147209 A1, 26.05.2016 | |||
JP 2002039715 A, 06.02.2002 | |||
RU 2015111877 A, 01.04.2015 | |||
УСТРОЙСТВО ДИАГНОСТИКИ ВОЗДУШНЫХ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ И ЕГО КОМПОНЕНТ | 2014 |
|
RU2558002C1 |
Авторы
Даты
2019-01-17—Публикация
2016-11-08—Подача