Способ очистки призабойной зоны пласта от глинистых образований Российский патент 2019 года по МПК E21B37/06 C09K8/52 E21B43/22 

Описание патента на изобретение RU2679936C1

Изобретение относится к нефтегазовой промышленности, а именно к физико-химическим способам очистки призабойной зоны пласта (ПЗП) от глинистых образований в открытом стволе и может быть использовано для восстановления проницаемости ПЗП и повышения производительности эксплуатационных скважин, законченных бурением, на месторождениях и подземных хранилищах газа.

В процессе бурения скважин поровое пространство околоствольной части пласта кольматируется твердой фазой бурового раствора, при этом проницаемость ПЗП снижается за счет образования фильтрационной глинистой корки, проникновения фильтрата бурового раствора, а также за счет диспергирования и набухания составляющих скелета горной породы. Для восстановления проницаемости стенок скважины, ПЗП которой оборудована по типу «открытый ствол», производят очистку ПЗП от глинистых образований.

Известен состав для обработки ПЗП (патент РФ №2047757, Е21В 43/27, опубл. 10.11.1995), содержащий кислоту, поверхностно-активное вещество и воду. В качестве кислоты используют нитрилотриметилфосфоновую кислоту, а в качестве поверхностно-активного вещества дихлорид-бис - (N,N-диметил-N-карбодецоксиметил-N-этиленаммония) сульфид при следующем соотношении компонентов, мас.:

нитрилотриметилфосфоновая кислота 0,005-0,15;

дихлорид-бис-(N, N-диметил-N-карбодецоксиметил-N-этиленаммония) сульфид 0,1-0,5;

вода - остальное.

Недостатком известного состава, применяющегося для обработки ПЗП, является невысокая эффективность обработки терригенного коллектора, обусловленная малой концентрацией кислотного состава и, как следствие, слабым физико-химическим воздействием указанного состава на глинистые породы терригенных коллекторов.

Наиболее близким к предложенному способу (прототипом) является способ очистки ПЗП (патент РФ №2617135, Е21В 43/22, опубл. 21.04.2017), в котором удаляют рыхлую часть глинистых образований путем промывки ПЗП технической водой, закачивают в ПЗП очищающий реагент на водной основе, содержащий бисульфат натрия в количестве 15-17 мас. % и гидрохинон в количестве 2-4 мас. %, и выдерживают его до разрушения плотной части глинистых образований. Объем очищающего реагента на водной основе выбирают таким образом, чтобы высота жидкостного столба закачанного очищающего реагента на водной основе была выше кровли продуктивного пласта. Затем осуществляют промывку от продуктов реакции и закачивают водный раствор кислоты, содержащий оксиэтилидендифосфоновую кислоту в количестве 17-19 мас. %. Выдерживают упомянутый водный раствор кислоты в течение времени, необходимого до растворения остаточных глинистых образований, и осуществляют освоение скважины.

Недостатком данного способа является неравномерное разрушение структуры глинистых образований, что не позволяет обеспечить эффективное удаление плотной части глинистых образований (глинистой корки) со стенок скважины, вследствие чего не обеспечивается максимальное восстановление проницаемости призабойной зоны в открытом стволе.

Задачей, на решение которой направлено предлагаемое изобретение, является разработка эффективного способа очистки ПЗП.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности очистки ПЗП от глинистых образований и, как следствие, максимальное восстановление проницаемости продуктивного пласта, что обеспечивает повышение производительности эксплуатационных скважин, ПЗП которых оборудована по типу «открытый ствол».

Указанный технический результат достигается за счет того, что в способе очистки призабойной зоны пласта от глинистых образований, удаляют рыхлую часть глинистых образований путем промывки ПЗП технической водой, после чего закачивают в ПЗП очищающий реагент на водной основе и выдерживают упомянутый реагент до разрушения плотной части глинистых образований. Объем очищающего реагента на водной основе выбирают таким образом, чтобы высота жидкостного столба закачанного очищающего реагента на водной основе была выше кровли продуктивного пласта. После чего осуществляют промывку от продуктов реакции, закачивают в ПЗП водный раствор кислоты и выдерживают упомянутый раствор в течение времени, необходимого для растворения остаточных глинистых образований. Затем осуществляют освоение скважины. Очищающий реагент на водной основе содержит гидроксиламин солянокислый в количестве 12-14 мас. % и хингидрон в количестве 0,1-0,3 мас. %, а водный раствор кислоты содержит нитрилотриметилфосфоновую кислоту в количестве 9-11 мас. %.

Гидроксиламин солянокислый (NH2OH⋅HCl) применяют в качестве химического реагента, способного переводить труднорастворимые окислы в растворимые соли.

Хингидрон (С12Н10О4) применяют в качестве антиокислителя для стабилизации легко окисляющихся веществ.

Нитрилотриметилфосфоновую кислоту (НТФ) применяют в качестве ингибитора солеотложений и как комплексообразующий реагент.

Способ осуществляют следующим образом.

Вначале осуществляют предварительную промывку ПЗП технической водой для удаления рыхлой части глинистых образований со стенок скважины, при этом выполняют не менее 8-10 циклов при создании возможной максимальной скорости прокачки. После удаления рыхлой части глинистых образований на стенках скважины остается ее более плотная часть, для удаления которой в ПЗП закачивают очищающий реагент на водной основе, содержащий гидроксиламин солянокислый с добавкой хингидрона, и выдерживают его до разрушения плотной части глинистых образований, т.е. создают в ПЗП жидкостную ванну. Объем закачки очищающего реагента на водной основе выбирают из условия перекрытия им кровли продуктивного пласта, а именно: объем закачки должен быть таким, чтобы жидкостной столб очищающего реагента на водной основе, закачанного в скважину, был более чем на 10 метров выше кровли продуктивного пласта. Такой объем закачки очищающего реагента на водной основе обеспечивает необходимую степень очистки ПЗП.

В результате физико-химического воздействия происходит разрушение структуры глинистых образований, при этом часть глинистых частиц отслаивается со стенок скважины, теряя способность к слипанию.

После очистки ПЗП от глинистых образований скважину промывают от продуктов реакции технической водой. Далее закачивают в пласт водный раствор нитрилотриметилфосфоновой кислоты и выдерживают его в ПЗП в течение времени, необходимого для растворения остаточных глинистых образований. При этом в ПЗП протекает физико-химическая реакция по растворению глинистых составляющих, занесенных в продуктивный пласт.

Объем водного раствора нитрилотриметилфосфоновой кислоты выбирают в зависимости от конструкции скважины, пористости пласта-коллектора, радиуса ПЗП со сниженной проницаемостью и рассчитывают по формуле:

где V - объем водного раствора нитрилотриметилфосфоновой кислоты, м3; r - планируемый радиус проникновения кислотного раствора, м; m - коэффициент пористости породы, h - мощность обрабатываемого интервала, м.

В результате происходит восстановление проницаемости пласта путем очистки, расширения существующих и образования новых фильтрационных каналов в пористой среде на удаленных участках ПЗП и по всей вскрытой мощности пласта. По истечении заданного времени выдержки в ПЗП водного раствора нитрилотриметилфосфоновой кислоты скважину осваивают и вводят в эксплуатацию.

В лабораторных условиях экспериментальным путем определили оптимальное содержание компонентов в технологических жидкостях (очищающем реагенте на водной основе и водном растворе кислоты), при которых было бы обеспечено максимальное восстановление фильтрационных характеристик продуктивного пласта.

Лабораторные исследования осуществлялись в следующей последовательности.

Сформировали рабочий образец, имитирующий ПЗП определенной проницаемости.

После формирования рабочего образца профильтровали через него воду и определили начальный коэффициент проницаемости рабочего образца при заданном перепаде давления. Коэффициент проницаемости рассчитали по формуле:

где: μ - коэффициент динамической вязкости прокачиваемой среды, Па⋅с; l, d - длина и диаметр рабочего образца, м; Р - давление на входе, Па; Рат - атмосферное давление, Па; Q - расход жидкости, м3/с.

При том же перепаде давления через рабочий образец профильтровывали насыщенный глинистый раствор плотностью 1150 кг/м3 до образования глинистой корки и выдерживали образец в течение заданного времени. Далее глинистый раствор выдавливали водой (своеобразный буфер, часто применяемый в промысловых условиях). Затем заполняли полость очищающим реагентом на водной основе, содержащим гидроксиламин солянокислый с добавкой хингидрона и оставляли жидкость в покое на реагирование с глинистой коркой в течение заданного времени. Затем сливали очищающий реагент на водной основе из полости. Далее продавливали в рабочий образец водный раствор нитрилотриметилфосфоновой кислоты. После заданного времени выдержки кислотного состава в обратном направлении профильтровывали воду и определяли коэффициент восстановления проницаемости при заданном перепаде давления.

В лабораторных условиях были проведены исследования, подтверждающие высокую эффективность описанного выше способа очистки ПЗП от глинистых образований скважины, для чего были разработаны различные варианты технологических жидкостей (очищающего реагента на водной основе и водного раствора кислоты), отличающиеся количественным содержанием компонентов.

Пример 1.

Осуществляют предварительную промывку ПЗП технической водой (не менее 8-10 циклов при создании возможной максимальной скорости прокачки). Закачивают очищающий реагент на водной основе, содержащий: 11 мас. % гидроксиламина солянокислого, 0,05 мас. % хингидрона и остальное вода. Очищающий реагент выдерживают в течение 5-6 часов, после чего скважину промывают от продуктов реакции. Закачивают в ПЗП водный раствор кислоты, содержащий: 8 мас. % нитрилотриметилфосфоновой кислоты и остальное вода. Выдерживают упомянутый раствор кислоты в течение времени, необходимого для растворения остаточных глинистых образований. После закачки кислотного раствора в пласт скважину выдерживают для реакции в течение 10-12 часов и осваивают ее.

Пример 2.

Осуществляют предварительную промывку ПЗП технической водой (не менее 8-10 циклов при создании возможной максимальной скорости прокачки). Закачивают очищающий реагент на водной основе, содержащий: 12 мас. % гидроксиламина солянокислого, 0,1 мас. % хингидрона и остальное вода. Очищающий реагент выдерживают в течение 5-6 часов, после чего скважину промывают от продуктов реакции. Закачивают в ПЗП водный раствор кислоты, содержащий: 9 мас. % нитрилотриметилфосфоновой кислоты и остальное вода. Выдерживают упомянутый раствор кислоты в течение времени, необходимого для растворения остаточных глинистых образований. После закачки кислотного раствора в пласт скважину выдерживают для реакции в течение 10-12 часов и осваивают ее.

Пример 3.

Осуществляют предварительную промывку ПЗП технической водой (не менее 8-10 циклов при создании возможной максимальной скорости прокачки). Закачивают очищающий реагент на водной основе, содержащий: 13 мас. % гидроксиламина солянокислого, 0,2 мас. % хингидрона и остальное вода. Очищающий реагент выдерживают в течение 5-6 часов, после чего скважину промывают от продуктов реакции. Закачивают в ПЗП водный раствор кислоты, содержащий: 10 мас. % нитрилотриметилфосфоновой кислоты и остальное вода. Выдерживают упомянутый раствор кислоты в течение времени, необходимого для растворения остаточных глинистых образований. После закачки кислотного раствора в пласт скважину выдерживают для реакции в течение 10-12 часов, после чего осваивают ее.

Пример 4.

Осуществляют предварительную промывку ПЗП технической водой (не менее 8-10 циклов при создании возможной максимальной скорости прокачки). Закачивают очищающий реагент на водной основе, содержащий: 14 мас. % гидроксиламина солянокислого, 0,3 мас. % хингидрона и остальное вода. Очищающий реагент выдерживают в течение 5-6 часов, после чего скважину промывают от продуктов реакции. Закачивают в ПЗП водный раствор кислоты, содержащий: 11 мас. % нитрилотриметилфосфоновой кислоты и остальное вода. Выдерживают упомянутый раствор кислоты в течение времени, необходимого для растворения остаточных глинистых образований. После закачки кислотного раствора в пласт скважину выдерживают для реакции в течение 10-12 часов, после чего осваивают ее.

Пример 5.

Осуществляют предварительную промывку ПЗП технической водой (не менее 8-10 циклов при создании возможной максимальной скорости прокачки). Закачивают очищающий реагент на водной основе, содержащий: 15 мас. % гидроксиламина солянокислого, 0,35 мас. % хингидрона и остальное вода. Очищающий реагент выдерживают в течение 5-6 часов, после чего скважину промывают от продуктов реакции. Закачивают в ПЗП водный раствор кислоты, содержащий: 12 мас. % нитрилотриметилфосфоновой кислоты и остальное вода. Выдерживают упомянутый раствор кислоты в течение времени, необходимого для растворения остаточных глинистых образований. После закачки кислотного раствора в пласт скважину выдерживают для реакции в течение 10-12 часов, после чего осваивают ее.

Результаты исследований приведены в таблице.

Из результатов лабораторных исследований, приведенных в таблице, следует, что при применении технологических жидкостей по п. 3 таблицы восстановление проницаемости ПЗП будет недостаточно высоким, а при применении технологических жидкостей по п. 7 таблицы проницаемость будет на уровне, достигнутом применением технологических жидкостей по п.п. 4-6, но при этом расход реагентов увеличится, т.е. применение технологических жидкостей по п. 7 экономически не оправдано.

С учетом результатов указанных выше лабораторных исследований было установлено, что содержание в очищающем реагенте на водной основе гидроксиламина солянокислого в количестве 12-14 мас. % и хингидрона в количестве 0,1-0,3 мас. %, а содержание в водном растворе нитрилотриметилфосфоновой кислоты в количестве 9-11 мас. % (п.п. 4-6 таблицы) является оптимальным для достижения технического результата заявленного способа и позволит повысить эффективность очистки ПЗП и, как следствие, увеличить проницаемость пласта. Повышение проницаемости ПЗП позволит повысить производительность скважин в 1,5 раза.

Заявленный способ очистки ПЗП от глинистых образований обеспечивает повышение производительности эксплуатационных скважин, ПЗП которых оборудована по типу «открытый ствол» за счет повышения эффективности очистки ПЗП.

Похожие патенты RU2679936C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА ОТ ГЛИНИСТЫХ ОБРАЗОВАНИЙ 2015
  • Рогов Евгений Анатольевич
RU2617135C1
СПОСОБ ВТОРИЧНОГО ВСКРЫТИЯ ПЛАСТА 1999
  • Капырин Ю.В.
  • Таратын М.Э.
  • Храпова Е.И.
RU2160827C1
Способ регенерации фильтра и очистки призабойной зоны пласта 2023
  • Рогов Евгений Анатольевич
RU2824616C1
СОСТАВ ДЛЯ РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2003
  • Котельников В.А.
  • Персиц И.Е.
  • Путилов С.М.
  • Давыдкина Л.Е.
RU2246612C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2003
  • Аюян Г.А.
  • Журавлёв С.Р.
RU2232879C1
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ СКВАЖИН В ТЕРРИГЕННОМ КОЛЛЕКТОРЕ 2010
  • Гребенников Валентин Тимофеевич
  • Качалов Олег Борисович
  • Потехин Валерий Александрович
  • Корнилова Елена Сергеевна
RU2433260C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ 2011
  • Паникаровский Евгений Валентинович
  • Кустышев Денис Александрович
  • Паникаровский Валентин Васильевич
  • Кустышев Александр Васильевич
  • Огибенин Валерий Владимирович
  • Шуплецов Владимир Аркадьевич
  • Паникаровский Василий Валентинович
  • Сагидуллин Максим Александрович
RU2477787C1
СПОСОБ ХИМИЧЕСКОЙ ОБРАБОТКИ ПРИСКВАЖИННОЙ ЗОНЫ ПЛАСТА ДЛЯ ИНТЕНСИФИКАЦИИ ПРИТОКА УГЛЕВОДОРОДОВ 2001
  • Клещенко И.И.
  • Ягафаров А.К.
RU2209957C1
СПОСОБ РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ НИЗКОПРОНИЦАЕМОГО НИЗКОТЕМПЕРАТУРНОГО ТЕРРИГЕННОГО ПЛАСТА 2014
  • Скрылев Сергей Александрович
  • Канашов Владимир Петрович
  • Красовский Александр Викторович
  • Кустышев Александр Васильевич
  • Немков Алексей Владимирович
  • Паникаровский Евгений Валентинович
  • Антонов Максим Дмитриевич
RU2555173C1
Способ обработки призабойной зоны пласта с терригенным типом коллектора 2019
  • Бурханов Рамис Нурутдинович
  • Максютин Александр Валерьевич
RU2724833C1

Реферат патента 2019 года Способ очистки призабойной зоны пласта от глинистых образований

Изобретение относится к нефтегазовой отрасли. В способе очистки призабойной зоны пласта (ПЗП) от глинистых образований удаляют рыхлую часть глинистых образований путем промывки ПЗП технической водой, после чего закачивают в ПЗП очищающий реагент на водной основе и выдерживают упомянутый реагент до разрушения плотной части глинистых образований. Объем очищающего реагента на водной основе выбирают таким образом, чтобы высота жидкостного столба закачанного очищающего реагента на водной основе была выше кровли продуктивного пласта. Осуществляют промывку от продуктов реакции, закачивают в ПЗП водный раствор кислоты и выдерживают упомянутый раствор в течение времени, необходимого для растворения остаточных глинистых образований. Затем осуществляют освоение скважины. Очищающий реагент на водной основе содержит гидроксиламин солянокислый в количестве 12-14 мас. % и хингидрон в количестве 0,1-0,3 мас. %, а водный раствор кислоты содержит нитрилотриметилфосфоновую кислоту в количестве 9-11 мас. %. Повышается эффективность очистки ПЗП от глинистых образований. 1 табл.

Формула изобретения RU 2 679 936 C1

Способ очистки призабойной зоны пласта (ПЗП) от глинистых образований, в котором удаляют рыхлую часть глинистых образований путем промывки ПЗП технической водой, после чего закачивают в ПЗП очищающий реагент на водной основе и выдерживают упомянутый реагент до разрушения плотной части глинистых образований, при этом объем очищающего реагента на водной основе выбирают таким образом, чтобы высота жидкостного столба закачанного очищающего реагента на водной основе была выше кровли продуктивного пласта, после чего осуществляют промывку от продуктов реакции, закачивают в ПЗП водный раствор кислоты и выдерживают упомянутый раствор в течение времени, необходимого для растворения остаточных глинистых образований, затем осуществляют освоение скважины, отличающийся тем, что очищающий реагент на водной основе содержит гидроксиламин солянокислый в количестве 12-14 мас. % и хингидрон в количестве 0,1-0,3 мас. %, а водный раствор кислоты содержит нитрилотриметилфосфоновую кислоту в количестве 9-11 мас. %.

Документы, цитированные в отчете о поиске Патент 2019 года RU2679936C1

СПОСОБ РЕАГЕНТНОЙ ОБРАБОТКИ СКВАЖИНЫ 1997
  • Гребенников Валентин Тимофеевич[Ru]
  • Куайти Абдельазиз Али-Аль[Ye]
RU2106484C1
СПОСОБ ОБРАБОТКИ И РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ЭКСПЛУАТАЦИОННЫХ СКВАЖИН 2000
  • Бурмистров П.В.
  • Хасаев Рагим Ариф Оглы
RU2172824C1
БУФЕРНАЯ ЖИДКОСТЬ 2004
  • Леонов Евгений Григорьевич
  • Рогов Евгений Анатольевич
  • Джафаров Керим Исламович
  • Нифантов Виктор Иванович
  • Литвинов Леонид Николаевич
RU2309175C2
СПОСОБ УДАЛЕНИЯ КОЛЬМАТИРУЮЩИХ ОБРАЗОВАНИЙ ИЗ ПРИЗАБОЙНОЙ ЗОНЫ ТЕРРИГЕННОГО ПЛАСТА 2004
  • Магадов Рашид Сайпуевич
  • Магадова Любовь Абдулаевна
  • Силин Михаил Александрович
  • Гаевой Евгений Геннадьевич
  • Рудь Михаил Иванович
  • Мариненко Вера Николаевна
  • Просфиров Дмитрий Вениаминович
  • Зайцев Константин Игоревич
  • Губанов Владимир Борисович
  • Магадов Валерий Рашидович
  • Чекалина Гульчехра
  • Трофимова Мария Викторовна
RU2283952C2
US 7028775 B2, 18.04.2006.

RU 2 679 936 C1

Авторы

Рогов Евгений Анатольевич

Даты

2019-02-14Публикация

2018-03-06Подача