СОСТАВ ДЛЯ РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА Российский патент 2005 года по МПК E21B43/27 

Описание патента на изобретение RU2246612C1

Изобретение относится к нефтедобывающей промышленности, а конкретно к повышению нефтеотдачи низкопроницаемых глиносодержащих пластов.

Известны способы разработки нефтяной залежи, в которых используемые составы содержат различные перекисные соединения [1].

Недостатком описанных способов разглинизации призабойной зоны пласта (ПЗП) является необоснованный выбор концентраций перекисьсодержащих соединений, а также невысокая эффективность ввиду отсутствия технологических приемов очистки призабойной зоны от продуктов реакции.

Известен также способ обработки заглинизированных пластов, включающий закачку в скважину водных растворов солей щелочных металлов и аммония, растворов ПАВ, выдержки на реагирование и последующей закачки в пласт раствора соляной кислоты 6-15%-ной концентрации, содержащего пероксикарбонат натрия и надсернокислый аммоний, выдержки в пласте в течение 2-х часов, после чего скважину запускают в работу [2].

К недостаткам данного способа следует отнести использование высоких концентраций диспергирующих агентов - пероксикарбоната натрия (до 12%) и надсернокислого аммония (до 30%), приводящее к более чем 50%-ной нейтрализации закачиваемой кислоты. Наиболее близким по технической сущности и достигаемому эффекту является состав для разглинизации призабойной зоны пласта, содержащий соляную кислоту, отходы нефтехимического синтеза, включающие нитрилотриметилфосфоновую кислоту, нитрат аммония или дифонат и водно-метанольную фракцию. В вариантах состав также содержит пероксигидрат мочевины, ПАВ, фтористоводородную кислоту [3].

К недостаткам данного состава следует отнести высокие концентрации НСl (до 20%), приводящие к снижению глубины воздействия на пласт за счет быстрого выпадения нерастворимых осадков, и многокомпонентность разглинизирующего состава.

Техническим результатом изобретения является разработка разглинизирующего состава, применение которого позволяет увеличить проницаемость ПЗП до значений, близких или выше первоначальных, за счет эффективного удаления глинистых и других кольматирующих образований в поровом пространстве пласта, а также за счет частичного растворения терригенной составляющей коллектора.

Поставленная цель достигается тем, что состав для разглинизации призабойной зоны пласта, содержащий глинодиспергирующий реагент, перекисьсодержащее соединение и воду, содержит в качестве перекисьсодержащего соединения пероксисольват фторида калия в активированной форме, содержащий от 1 до 3 маc.% щавелевой или салициловой кислоты, и состоит из двух последовательно закачиваемых технологических растворов при следующем соотношении компонентов, маc.%: технологический раствор 1: указанный пероксисольват фторида калия 1-2,5, глинодиспергирующий реагент - соляная кислота 3-8,0, вода остальное; технологический раствор 2: указанный пероксисольват фторида калия 1-2,5, глинодиспергирующий реагент - гидрооксид натрия 4-6,0, вода остальное.

Указанные технологические растворы дополнительно содержат водорастворимое поверхностно-активное вещество в количестве 0,1-1,0 маc.%.

После каждой обработки указанными технологическими растворами и выдержки скважины на реагирование производят удаление диспергированных продуктов реакции из призабойной зоны пласта.

Выдержка на реагирование - 8-24 часов (в зависимости от температуры пласта). Удаление производят до поступления в скважину пластового флюида.

Время, необходимое на реагирование, контролируют по скорости нарастания давления на устье скважины и его величине, не превышающего давления опрессовки эксплуатационной колонны.

Для увеличения естественной проницаемости набухающих монтморилонитовых глинистых кольматирующих образований терригенных коллекторов используется кислотная и щелочная системы, содержащие газообразующий, глинодиспергирующий реагент. Газообразование, происходящее на контакте с глиной, позволяет производить постоянное обновление концентрации кислоты и диспергирующего вещества за счет циклического расширения и сужения пузырьков газа при входе в низкопроницаемые поры. В результате химического взаимодействия с материалом горных пород происходит деструкция глины за счет разрушения в ней отдельных комплексов (например алюмосоединений), диспергация и частичное растворение под действием разработанного состава. Последующее удаление продуктов реакции путем дренирования или свабирования очищает коллектор прискважинной зоны, а последующая закачка щелочной системы эффективно воздействует на остаточную глину.

Такого рода комплексное воздействие на кольматирующие образования обеспечивает наиболее полное как их растворение, так и перевод в пелитовую фазу, легко удаляемую при обработке скважины.

В качестве перекисного соединения используют стабильный при хранении взрывобезопасный реагент пероксисольват фторида калия (ПФК) общей формулы КF(Н2O2)n, где n=1-3, в состав которого при синтезе было введено от 1 до 3% щавелевой или салициловой кислоты. Органическая кислота, присутствующая в перекисьсодержащем соединении, оказывает активирующее действие и регулирует скорость образования фтористоводородной кислоты, взаимодействующей с породой. В процессе взаимодействия разглинизирующего состава с породой коллектора за счет смещения равновесия реакции:

2KF+(COOH)2(COOK)2+2HF

происходит образование фтористоводородной кислоты, которая активно растворяет кремнистые панцири микроорганизмов и воздействует на диспергированные глинистые образования, способствуя переводу их в водную фазу. При этом низкие концентрации образующейся HF не приводят к образованию таких труднорастворимых осадков, как фториды кальция и алюминия, гексафторсиликаты моновалентных металлов.

В качестве водорастворимых поверхностно-активных веществ можно использовать нефтенолы различных марок.

Для доказательства соответствия заявляемого изобретения критерию "промышленная применимость" ниже приведены конкретные примеры и определения эффективности разглинизации призабойной зоны пласта.

Примеры конкретного выполнения

Концентрации реагентов являются оптимальными для проявления технического результата, достигаемого по данному изобретению. Определение оптимальной концентрации реагентов проводили весовым способом по методике [4]. В опытах использовали высушенную до постоянного знака бентонитовую глину. Масса навески составляла 2 г, эффективность обработки оценивали по степени растворения осадка как m2/m1, где m1 и m2 - вес высушенного осадка при 105°С до и после и обработки. Полученные результаты приведены в таблице 1. Как видно из таблицы, растворение осадка наиболее эффективно протекает в присутствии 1-2,0 мас.% указанного пероксисольвата фторида калия в кислотном растворе 3-5%-ной концентрации. В щелочном растворе с концентрацией 3-5 мас.% растворение осадка происходит также в заметной степени. Дальнейшее увеличение концентрации разглинизирующего состава является неэффективным. Определение растворимости проводили на образцах горной породы методом весового анализа. Образцы натурального керна Кислорского месторождения весом порядка 2-х граммов с содержанием глины 12,6% взвешивали на аналитических весах с точностью до четвертого знака, помещали в стакан емкостью 100-150 мл, заливали технологическим раствором №1 и термостатировали при 20-80°С в течение 6-24-х часов. Содержимое фильтровали, промывали до нейтральной реакции, высушивали при 105°С и взвешивали. По разности весов оценивали степень разглинизации. Затем полученные навески заливали технологическим раствором №2 и операцию повторяли. Параллельно по аналогичной методике определяли растворимость измельченных в агатовой ступке образцов горной породы.

Таблица 1
Влияние концентрации разглинизирующего состава на степень
растворения осадка.
(условия обработки; продолжительность 20 часов, температура 20°С)
№ примераКонцентрация реагентов, мас.%Степень растворения осадка, % HClКF(Н2O2)nNaOH 1.2,51,0-38,12.3,01,0-47,43.5,01,0-51,14.8,01,0-52,75.5,01,5 53,66.5,02,0 55,07.5,02,5 56,28.-1,03,022,19.-2,05,037,810.-2,58,040,011.-3,010,041,7

Дополнительно в ряде случаев в технологические растворы вводили водорастворимые поверхностно-активные вещества (ПАВ) и газообразующие реагенты (Na2CO3, NН4НСО3, NH4F, (NН4)2СО3).

Результаты обработки образцов натурального керна приведены в таблице 2.

Таблица 2
Разглинизация образцов горной породы терригенного глинистого коллектора с применением технологических растворов (содержание глины 12,6%)
№ примераСостав 1-го технологи-ческого раствора, мас.%Температура/время выдержки,°С/час% снижения весаСостав 2-го технологиче-ского раствора,
мас.%
Температуpa/время выдержки,°С/часОбщий % снижения веса
12.НСl, 5 (контрольн)20/241,0HCl, 5 (контрольн)20/242,6713.НСl, 5; ПФК,120/85,24HCl, 5; ПФК,120/86,7314.НСl, 5; ПФК, 120/85,28NaOH, 5; ПФК, 120/89,1115.НСl, 5; ПФК, 120/2011,03NaOH, 5; ПФК.120/2019,1316.НСl, 5; ПФК,180/610,80NaOH, 5; ПФК, 180/616,6517.HCl, 5; ПФК, 1; Нефтенол-ВВД, 0,220/86,90NaOH, 5; ПФК, 120/811,06

Содержание воды в технологических растворах - остальное до 100%.

Из таблицы видно, что присутствие в разглинизирующем растворе ПФК приводит к увеличению потери веса образцов по сравнению с контрольным опытом (срав. примеры 12 и 13). Замена кислотного состава на щелочной (пример 14) способствует более глубокому растворению глины, достигающему 72,6% от ее общего содержания в образце. При увеличении продолжительности обработки с 8 до 20 часов (пример 15) растворению подвергается не только глинистая составляющая, но и в заметной степени терригенная основа образца.

При повышении температуры обработки процесс разглинизации происходит за более короткое время. Так в опыте 16 при выдержке образцов в течение 6 часов при температуре 80°С общий процент снижения веса образцов горной породы достигает 16,65%, что также выше исходного содержания глины.

Введение в технологические растворы водорастворимых ПАВов и газообразующих реагентов также способствует процессу разглинизации образцов благодаря интенсификации диспергирования глинистых частиц (срав. примеры 14 и 17).

Оценку эффективности разработанного состава по сравнению с прототипом проводили на фильтрационной установке УИПК-1М на насыпных моделях, содержащих 5% набухаемой монтмориллонитовой глины, с проницаемостью по воде после 12-часовой выдержки при 60°С 1,043-1,051 мкм2. Поровый объем модели составлял 120,55 см3, пористость 33,01%, начальная водонасыщенность - 100%. Продавку разработанного разглинизирующего состава, состоящего из 2-х технологических растворов, через насыпную модель проводили в последовательности, описанной в примерах. Результаты эксперимента представлены в таблице 3.

Таблица 3
Сравнительные результаты по разглинизации насыпной модели, заполненной кварцевым песчаником, содержащим 5% монтмориллонитовой глины
№ примераСостав, мас.%Квосст. НСlДобавкаВМФПАВNaOHНаО 18. 1-й р-р5ПФК; 1,5-Нефтенол ВВД; 0,5-931,502-й р-р-ПФК; 1,5-Нефтенол ВВД; 0,5593 19 (прототип)20Д+ПГМ (1:3); 1033ОП-10; 0,5-37,00,71Условные сокращения: ВМФ - водно-метанольная фракция; ПФК - пероксисольват фторида калия; Д - дифонат; ПГМ - пероксигидрат мочевины.

Полученные данные свидетельствуют о том, что несмотря на значительно более низкие концентрации НС1 и перекисьсодержащего соединения разработанный разглинизирующий состав является более эффективным по сравнению с наиболее близким аналогом: Квосст. проницаемости в примере 18 примерно в 2 раза выше, чем в примере 19.

Технико-экономическое преимущество предлагаемого состава для разглинизации призабойной зоны пласта заключается в том, что его применение позволяет увеличивать как проницаемость ПЗП, так и глубину обработки.

Источники информации:

1. В.Н. Глушко, О.В. Поздеев. М.: ВНИИУ и ЭНП, 1998, с.28-40.

2. М.А. Токарев, Р.Г. Исламов, В.Б. Смирнов, Г.М. Токарев. Способ обработки заглинизированных пластов, патент РФ №2162146 С1, Е 21 В 43/27, 43/22, 1999 г.

3. Ю.В. Баранов, Т.Л. Гоголашвили, И.Х. Зиятдинов, М.М. Хакимзянова, И.Г. Нигматуллин, М.А. Маликов, С.Г. Тарасов, Р.Г. Рамазанов. Состав для разглинизации призабойной зоны пласта, патент РФ №2174594 С1, Е 21 В 43/27, 2000 г.

4. Л.П. Рузинов и Р.И. Слободчикова. Планирование эксперимента в химии и химической технологии. - М.: Химия, 1980 [серия "химическая кибернетика" - 280 с.].

Похожие патенты RU2246612C1

название год авторы номер документа
Пиротехнический состав для разглинизации пласта 2022
  • Крыев Рафаэль Анварович
  • Коробков Александр Михайлович
  • Дряхлов Влад Олегович
  • Петров Евгений Сергеевич
RU2793908C1
СПОСОБ УДАЛЕНИЯ КОЛЬМАТИРУЮЩИХ ОБРАЗОВАНИЙ ИЗ ПРИЗАБОЙНОЙ ЗОНЫ ТЕРРИГЕННОГО ПЛАСТА 2004
  • Магадов Рашид Сайпуевич
  • Магадова Любовь Абдулаевна
  • Силин Михаил Александрович
  • Гаевой Евгений Геннадьевич
  • Рудь Михаил Иванович
  • Мариненко Вера Николаевна
  • Просфиров Дмитрий Вениаминович
  • Зайцев Константин Игоревич
  • Губанов Владимир Борисович
  • Магадов Валерий Рашидович
  • Чекалина Гульчехра
  • Трофимова Мария Викторовна
RU2283952C2
СПОСОБ УДАЛЕНИЯ КОЛЬМАТИРУЮЩИХ ОБРАЗОВАНИЙ ИЗ ПРИЗАБОЙНОЙ ЗОНЫ ТЕРРИГЕННОГО ПЛАСТА 2004
  • Магадов Рашид Сайпуевич
  • Магадова Любовь Абдулаевна
  • Силин Михаил Александрович
  • Гаевой Евгений Геннадьевич
  • Рудь Михаил Иванович
  • Мариненко Вера Николаевна
  • Пахомов Михаил Дмитриевич
  • Зайцев Константин Игоревич
RU2272127C1
СПОСОБ РЕАГЕНТНОЙ РАЗГЛИНИЗАЦИИ СКВАЖИНЫ 2011
  • Файзуллин Илфат Нагимович
  • Хуррямов Альфис Мансурович
  • Хуррямов Булат Альфисович
  • Рамазанов Рашит Газнавиевич
  • Зиятдинов Радик Зяузятович
  • Сулейманов Фарид Баширович
RU2484244C1
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ СКВАЖИН В ТЕРРИГЕННОМ КОЛЛЕКТОРЕ 2010
  • Гребенников Валентин Тимофеевич
  • Качалов Олег Борисович
  • Потехин Валерий Александрович
  • Корнилова Елена Сергеевна
RU2433260C1
БАЗОВАЯ ОСНОВА СОСТАВА ДЛЯ КИСЛОТНОЙ ОБРАБОТКИ ТЕРРИГЕННОГО КОЛЛЕКТОРА И РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2005
  • Веселков Сергей Николаевич
  • Гребенников Валентин Тимофеевич
  • Миков Александр Илларионович
  • Шипилов Анатолий Иванович
RU2301248C1
ТВЕРДАЯ ОСНОВА СОСТАВА ДЛЯ КИСЛОТНОЙ ОБРАБОТКИ ТЕРРИГЕННОГО КОЛЛЕКТОРА 2007
  • Чабина Татьяна Владимировна
  • Казакова Лаура Васильевна
  • Федотова Татьяна Валентиновна
  • Глезденева Тамара Владимировна
RU2333235C1
СОСТАВ ДЛЯ ОБРАБОТКИ ТЕРРИГЕННЫХ КОЛЛЕКТОРОВ 2006
  • Котельников Виктор Александрович
  • Путилов Сергей Михайлович
  • Давыдкина Людмила Емельяновна
  • Хафизова Юлия Игоревна
RU2319727C1
Химический реагент для обработки призабойной зоны пласта нефтяных скважин 2021
  • Мосесян Ашот Аветисович
  • Данилина Наталья Игоревна
RU2776820C1
СПОСОБ ОБРАБОТКИ ГЛИНОСОДЕРЖАЩИХ КОЛЛЕКТОРОВ НЕФТЯНОГО ПЛАСТА 1999
  • Старкова Н.Р.
  • Шарифуллин Ф.А.
  • Бриллиант Л.С.
  • Гордеев А.О.
  • Куракин В.И.
RU2165014C1

Реферат патента 2005 года СОСТАВ ДЛЯ РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА

Изобретение относится к нефтедобывающей промышленности, а конкретно к повышению нефтеотдачи низкопроницаемых глиносодержащих пластов. Техническим результатом изобретения является разработка разглинизирующего состава, применение которого позволяет увеличить проницаемость ПЗП до значений, близких или выше первоначальных, за счет эффективного удаления глинистых и других кольматирующих образований в поровом пространстве пласта, а также за счет частичного растворения терригенной составляющей коллектора. Состав для разглинизации призабойной зоны пласта, содержащий глинодиспергирующий реагент, перекисьсодержащее соединение и воду, содержит в качестве перекисьсодержащего соединения пероксисольват фторида калия в активированной форме, содержащий от 1 до 3 мас.% щавелевой или салициловой кислоты, и состоит из двух последовательно закачиваемых технологических растворов при следующем соотношении компонентов, мас.%: технологический раствор 1: указанный пероксисольват фторида калия 1-2,5, глинодиспергирующий реагент - соляная кислота 3-8,0, вода остальное; технологический раствор 2: указанный пероксисольват фторида калия 1-2,5, глинодиспергирующий реагент - гидрооксид натрия 4-6,0, вода остальное. Указанные технологические растворы дополнительно содержат водорастворимое поверхностно-активное вещество в количестве 0,1-1,0 мас.%. После каждой обработки указанными технологическими растворами и выдержки скважины на реагирование производят удаление диспергированных продуктов реакции из призабойной зоны пласта. 2 з.п. ф-лы, 3 табл.

Формула изобретения RU 2 246 612 C1

1. Состав для разглинизации призабойной зоны пласта, содержащий глинодиспергирующий реагент, перекисьсодержащее соединение и воду, отличающийся тем, что он содержит в качестве перекисьсодержащего соединения пероксисольват фторида калия в активированной форме, содержащий от 1 до 3 мас.% щавелевой или салициловой кислоты, и состоит из двух последовательно закачиваемых технологических растворов при следующем соотношении компонентов, мас.%:

Технологический раствор 1:

указанный пероксисольват фторида калия 1-2,5

глинодиспергирующий реагент - соляная кислота 3-8,0

вода остальное

Технологический раствор 2:

указанный пероксисольват фторида калия 1-2,5

глинодиспергирующий реагент - гидрооксид натрия 4-6,0

вода остальное

2. Состав по п.1, отличающийся тем, что указанные технологические растворы дополнительно содержат водорастворимое поверхностно-активное вещество в количестве 0,1-1,0 мас.%.3. Состав по п.1, отличающийся тем, что после каждой обработки указанными технологическими растворами и выдержки скважины на реагирование производят удаление диспергированных продуктов реакции из призабойной зоны пласта.

Документы, цитированные в отчете о поиске Патент 2005 года RU2246612C1

СОСТАВ ДЛЯ РАЗГЛИНИЗАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА (ВАРИАНТЫ) 2000
  • Баранов Ю.В.
  • Гоголашвили Т.Л.
  • Зиятдинов И.Х.
  • Хакимзянова М.М.
  • Нигматуллин И.Г.
  • Маликов М.А.
  • Тарасов С.Г.
  • Рамазанов Р.Г.
RU2174594C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОЙ ЗАЛЕЖИ С НЕОДНОРОДНЫМИ ПО ПРОНИЦАЕМОСТИ ГЛИНОСОДЕРЖАЩИМИ ПЛАСТАМИ 1993
  • Балакин В.В.
  • Воропанов В.Е.
  • Хавкин А.Я.
  • Табакаева Л.С.
  • Путилов С.М.
RU2071553C1
СПОСОБ РЕАГЕНТНОЙ ОБРАБОТКИ СКВАЖИНЫ 2000
  • Гребенников В.Т.
  • Шаевский О.Ю.
  • Шарифуллин Ф.А.
RU2166626C1
СПОСОБ РАЗГЛИНИЗАЦИИ СКВАЖИН 1987
  • Гребенников В.Т.
  • Арестов Б.В.
  • Казарян В.П.
SU1480413A1
СПОСОБ ОБРАБОТКИ ЗАГЛИНИЗИРОВАННЫХ ПЛАСТОВ 1999
  • Токарев М.А.
  • Исламов Р.Г.
  • Смирнов В.Б.
  • Токарев Г.М.
RU2162146C1
US 4624314 A, 25.11.1986

RU 2 246 612 C1

Авторы

Котельников В.А.

Персиц И.Е.

Путилов С.М.

Давыдкина Л.Е.

Даты

2005-02-20Публикация

2003-07-11Подача