Изобретение относится к стереоскопической видеотехнике, точнее - к технике наблюдения стереоизображений трехмерных (3D) сцен c полноэкранным разрешением в каждом ракурсе без использования стереоочков (или иных зрительных приспособлений, крепящихся к лицу наблюдателя) при отсутствии мерцаний наблюдаемого стереоизображения даже при минимальной (60 Гц) кадровой частоте, и может быть использовано для создания плоскопанельных стереоскопических компьютерных мониторов и телевизоров с использованием жидкокристаллических матриц практически любого типа.
Известен стереоскопический дисплей [1] с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащий источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый амплитудный сумматор изображений (АСИ), поляризационный кодировщик отношения изображений (ПКОИ) с матрично- адресуемым жидкокристаллическим (ЖК) экраном и статический фазо-поляризационный параллаксный барьер (ФППБ), два выхода которого оптически связаны с двумя зонами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу АСИ, а выход делительной секции функционального блока подключен к электронному входу ПКОИ, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока.
Известный дисплей обеспечивает безочковое наблюдение стереоизображений без мерцаний даже при минимальной (60 Гц) кадровой частоте с полноэкранным разрешением в каждом из двух ракурсных изображений за счет использования амплитудно-поляризационного формирователя, состоящего из АСИ и ПКОИ, в комбинации с статическим ФППБ.
Недостатком известного дисплея является узкая область наблюдения стереоизображений, состоящая из двух щелеобразных зон наблюдения двух ракурсных изображений 3D сцены, в центрах которых должны располагаться центры зрачков пользователя. Область уверенного восприятия стереоизображения (максимально допустимое отклонение центров зрачков двух глаз наблюдателя от центров двух соответствующих зон наблюдения) не превышает нескольких миллиметров по горизонтали (вдоль направления бинокулярного параллакса).
Наиболее близким по технической сущности к заявляемому устройству (прототипом) является стереоскопический дисплей [2] с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащий источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый АСИ, ПКОИ с матрично-адресуемым ЖК экраном, содержащим входной линейный поляризатор и информационный ЖК слой, и по крайней мере одни пассивные стереоочки, в первом и втором окнах которых расположены первый и второй раздельные линейные поляризаторы с взаимно ортогональными осями поляризации, выходы которых оптически сопряжены с двумя окнами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу АСИ, а выход делительной секции функционального блока подключен к электронному входу ПКОИ, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока.
Наблюдатель воспринимает два ракурсных изображения сквозь два линейных поляризатора в окнах стереоочков. Ширина области наблюдения стереоизображения ограничена только угловыми характеристиками ЖК экрана, поскольку закрепленные на голове наблюдателя стереоочки всегда обеспечивают автоматическое совпадение центров зон сепарации ракурсных изображений (окон стереоочков) с центрами зрачков наблюдателя.
Недостатками известного устройства является недостаточно высокий контраст сепарации ракурсных изображений, ведущий к значительным кросс-помехам между двумя окнами наблюдения (к частичному прониканию леворакурсного изображения в правое окно наблюдения и наоборот), а также создание неудобства для наблюдателя в необходимости носить стереоочки.
Контраст сепарации снижен по двум основным причинам. Первая причина - информационный ЖК слой ЖК экрана ПКОИ характеризуется наличием остаточного двупреломления (остаточного фазового сдвига) даже при самом высоком уровне электрического напряжения, определяемого амплитудой стереовидеосигнала, а изначально закрученный (наиболее часто - на 90°) информационный ЖК слой характеризуется в том числе остаточной оптической активностью (ведущей к нежелательному повороту вектора или эллипса поляризации проходящего света даже при самом высоком уровне электрического напряжения), что ведет к заметному прониканию света сквозь скрещенные (с взаимно ортогональными осями линейной поляризации) входной линейный поляризатор и один из линейных поляризаторов стереоочков (например, расположенный в левом окне стереоочков), т.е. к прониканию перекрестного (праворакурсного) изображения в левое окно наблюдения.
Вторая причина - входной линейный поляризатор совместно с другим линейным поляризатором, расположенным в правом окне стереоочков, имеют взаимно параллельные оси поляризации, что ведет к необходимости работы информационного ЖК слоя при фазовой задержке π (или при начальном угле 90° оптической активности) с целью режекции перекрестного (леворакурсного) изображения из правого окна наблюдения. ЖК слой при максимальной фазовой задержке π или при угле 90° оптической активности (получаемых при минимальной или нулевой амплитуде электрического управляющего напряжения) имеет максимальную неопределенность в начальной угловой ориентации ЖК молекул вследствие несовершенства ориентирующих покрытий на оптических подложках, примыкающих к ЖК слою, или из-за недостаточно точного действия оптически-активной добавки (агента) в составе ЖК для закрутки ЖК молекул по толщине ЖК слоя на заданный начальный угол, что ведет в заметному прониканию перекрестного (леворакурсного) изображения в правое окно наблюдения.
Задачей изобретения является повышение качества стереоизображения при сохранении широкой (расширенной) области наблюдения стереоизображения без использования зрительных приспособлений, крепящихся к лицу наблюдателя (стереоочков).
Поставленная задача в стереоскопическом дисплее с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащем источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый АСИ, ПДОИ с матрично-адресуемым ЖК экраном, и по крайней мере один поляризационно-декодирующий фильтр (ПДФ), две зоны сепарации которого оптически сопряжены с двумя окнами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу АСИ, а выход делительной секции функционального блока подключен к электронному входу ПКОИ, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока, решается тем, что, поляризационный декодирующий фильтр выполнен в виде бинокулярного поляризационно-декодирующего фильтра (БПДФ), содержащего блок управления и последовательно оптически связанные декодирующий ЖК слой и выходной линейный поляризатор, ось поляризации которого ортогональна оси поляризации входного линейного поляризатора, декодирующий ЖК слой снабжен группой адресных прозрачных электродов, электрические входы которых подключены к выходу блока управления, а суммарная апертура группы адресных прозрачных электродов равна суммарной апертуре пары смежных зон сепарации, вертикальная граница между которыми определена вертикальной границей между соответствующими смежными адресными прозрачными электродами, при этом остаточная оптическая анизотропия декодирующего ЖК слоя равна по абсолютной величине и противоположна по знаку остаточной диэлектрической анизотропии информационного ЖК слоя.
В одном примере конкретного выполнения каждый из ЖК слоев выполнен с закруткой ЖК молекул на 90° или 270°, при этом направление закрутки в информационном ЖК слое противоположно направлению закрутки в декодирующем ЖК слое, ось для обыкновенного (необыкновенного) луча на выходе информационного ЖК слоя ортогональна оси для обыкновенного (необыкновенного) луча на входе декодирующего ЖК слоя, а ось поляризации выходного поляризатора направлена вдоль оси для обыкновенного (необыкновенного) луча декодирующего ЖК слоя.
В другом примере конкретного выполнения информационный ЖК слой и декодирующий ЖК слой выполнены с гомогенной ориентацией ЖК молекул, при этом ось для обыкновенного (необыкновенного) луча информационного ЖК слоя ортогональна оси для обыкновенного (необыкновенного) луча декодирующего ЖК слоя, а ось поляризации выходного поляризатора направлена под углом 45° к оси для обыкновенного (необыкновенного) луча декодирующего ЖК слоя.
Повышение качества стереоизображения в устройстве обеспечивается достижением двух основных технических результатов. Первый технический результат состоит в увеличении контраста сепарации ракурсных изображений за счет компенсации остаточного фазового сдвига (вызванного остаточным двупреломлением) и остаточного угла закрутки (обусловленного остаточной оптической активностью) в информационном ЖК слое ПДОИ за счет противоположных по знаку остаточного фазового сдвига и остаточного угла закрутки в декодирующем ЖК слое каждого БПДФ.
Второй технический результат состоит в обеспечении одинаково высокого (максимального) контраста
При этом предложенное устройство, как и известное устройство [1] с ФППБ, обеспечивает наблюдение стереоизображения без использования стереоочков или иных зрительных приспособлений, крепящихся к лицам наблюдателей.
В первом частном варианте устройства группа адресных прозрачных электродов выполнена в виде первого и второго адресных прозрачных электродов, апертуры которых равны апертура первой и второй зон сепарации. Здесь обеспечивается расширенная (порядка нескольких сантиметров) область наблюдения стереоизображений в силу соответствующей ширины зон сепарации БПДФ.
Во втором частном варианте выполнения устройства блок управления выполнен с позиционным сенсором для отслеживания текущего положения окон наблюдения (центров зрачков глаз наблюдателя) по горизонтали, а группа адресных прозрачных электродов выполнена в виде группы столбцовых адресных прозрачных электродов, период расположения задает шаг горизонтального позиционирования вертикальной границы между двумя зонами сепарации. Здесь достигается широкая область наблюдения стереоизображения по горизонтали, ограниченная только размером апертуры БПДФ, без возникновения перекрестных помех в районе вертикальной границы при любом горизонтальном положении окон наблюдения (зрачков глаз наблюдателя) относительно апертуры БПДФ. Наличие позиционного сенсора обеспечивает синхронный горизонтальный сдвиг вертикальной границы в положение, соответствующее текущему положению средней линии между двумя окнами наблюдения (между центрами зрачков двух глаз наблюдателя).
Изобретение поясняется с помощью чертежей, на фигурах которых представлены:
Фиг. 1 - общая схема устройства.
Фиг. 2, 3 - конкретные примеры выполнения информационного и декодирующего жидкокристаллических слоев.
Фиг. 4, 5 - конкретные примеры выполнения бинокулярного поляризационно-декодирующего фильтра.
Фиг. 6, 7 - пояснения к физическим условиям сепарации ракурсных изображений.
Фиг. 8-10 - пояснения к работе частных вариантов выполнения устройства.
Устройство содержит (фиг. 1) источник 1 стереовидеосигнала, функциональный блок 2, блок 3 управления и последовательно оптически связанные источник 4 светового потока, матрично-адресуемый амплитудный сумматор изображений (АСИ) 5 и поляризационный кодировщик отношения изображений (ПКОИ) 6 с матрично-адресуемым жидкокристаллическим (ЖК) экраном, содержащим входной поляризатор 7 и информационный ЖК слой 8, выход которого сопряжен с оптическим входом по меньшей мере одного бинокулярного поляризационно-декодирующего фильтра (БПДФ) 9, содержащего последовательно оптически связанные декодирующий ЖК слой 10 и выходной поляризатор 11, ось pout поляризации (фиг. 2) которого ортогональна оси pin поляризации входного линейного поляризатора 7. Первая и вторая смежные зоны 101 и 102 сепарации, находящиеся в апертуре БПДФ 9, оптически сопряжены соответственно с левым
В первом частном варианте устройства группа адресных прозрачных электродов выполнена в виде первого 121 и второго 122 адресных прозрачных электродов, апертуры которых равны апертурам первой 101 и второй 101 зонам сепарации.
Во втором частном варианте устройства блок 2 управления выполнен с позиционным сенсором 31, а группа адресных прозрачных электродов выполнена в виде группы 13 столбцовых адресных прозрачных электродов, период расположения которых задан шагом горизонтального позиционирования вертикальной границы 13Г между двумя зонами сепарации.
Остаточная оптическая анизотропия декодирующего ЖК слоя 10 равна по абсолютной величине и противоположна по знаку остаточной диэлектрической анизотропии информационного ЖК слоя 8. Остаточная оптическая анизотропия соответствует сумме остаточного двупреломления
Противоположные знаки остаточного фазового сдвига
В первом примере конкретного выполнения БПДФ 9 (фиг. 2) информационный ЖК слой 8 и декодирующий ЖК слой 10 выполнены с закруткой ЖК молекул на величину 90° или 270°, причем предпочтительно - 90-градусной закруткой ЖК молекул, поскольку при этом достигается минимальное значение остаточной оптический анизотропии (максимальный контраст в скрещенных линейных поляризаторах 7, 11) при оптимальной величине управляющего напряжения (около 5В) в каждом ЖК слое. Направление 141 закрутки ЖК молекул 8i в информационном жидкокристаллическом слое 8 противоположно направлению 142 закрутки ЖК молекул 10i в декодирующем ЖК слое, а ось для необыкновенного
Во втором примере конкретного выполнения БПДФ 9 (фиг. 3) информационный ЖК слой 8 и декодирующий ЖК слой 10 выполнены с гомогенной ориентацией ЖК молекул, при этом ось для обыкновенного
В первом частном варианте устройства декодирующий ЖК слой 10 с одной своей стороны снабжен двумя смежными адресными прозрачными электродами 121 и 122, нанесенными на оптическую подложку 15 (фиг. 4), а с другой стороны снабжен общим прозрачным электродом Э1, нанесенным на оптическую подложку 16 и электрически соединенным с общим проводом («землей»). Электронным входом 17 БПДФ 9 являются раздельные электрические входы адресных прозрачных электродов 121 и 122.
Во втором частном варианте устройства декодирующий ЖК слой 10 с одной своей стороны снабжен группой смежных адресных прозрачных электродов 131…13i…12N (фиг. 5), нанесенными на оптическую подложку 17, а с другой стороны снабжен общим прозрачным электродом Э2, нанесенным на оптическую подложку 18 и соединенным с общим проводом. Электронным входом 18 БПДФ 9 служат раздельные электрические входы адресных прозрачных электродов 131…13i…12N.
Устройство работает следующим образом. В каждом кадре стереоскопический видеосигнал поступает от источника 1 стереовидеосигнала на входы суммирующей секции 21 и делительной секции 22 функционального блока 2, с выходов которых преобразованный видеосигнал поступает на электронные входы АСИ 5 и ПКОИ 6.
Световой поток от источника 4 модулируется по интенсивности
где
Поляризация светового потока модулируется с помощью ПКОИ 6 в соответствии с выражением
Для выполнения условия (2) при работе с вектором Emn линейной поляризации света угол его поворота, равный текущему углу закрутки
Поляризационно-кодирующая функция, определенная выражением (3), вычисляется делительной секцией 22 блока 2 управления. Детальный вывод выражения (3) приведен в [2] в виде соответствующего решения общего уравнения эллиптической поляризации света с граничными условиями, заданными выражениями (1) и (2). Физический смысл одновременного воспроизведения двух элементов
Для обеспечения одновременной сепарации двух ракурсных изображений в соответствии с выражением (4) с помощью единственного выходного линейного поляризатора 11, на одну его часть (для определенности, на правую часть - см. фиг. 7), соответствующую одной (правой) зоне сепарации, подается парциальный световой поток, описываемый исходным оптическим полем
После поступления на оптический вход БПДФ 9 светового потока, модулированного по интенсивности в соответствии с выражением (1) и по поляризации в соответствии с выражением (2), в результате действия (иллюстрируемого с помощью фиг. 7) декодирующего ЖК слоя 10 и выходного линейного поляризатора 11, на выходах двух зон 101, 102 сепарации БПДФ 9 (в паре окон
Для второго частного варианта устройства с вертикальной границей 10Г, имеющей возможность горизонтального перемещения (синхронно с горизонтальным сдвигом окон наблюдения) каждый из первого и второго наблюдателей будет воспринимать mn-х элементы
Улучшение качества стереоизображения обусловлено увеличением контраста сепарации ракурсных изображений вследствие полной взаимной компенсации действий остаточных эффектов двупреломления и оптической активности в информационном ЖК слое 8 и декодирующем ЖК слое 10. Действительно, результатом действия остаточного двупреломления в информационном 8 и декодирующем 10 ЖК слоях являются остаточные фазовые сдвиги одинаковой абсолютной величины и разного знака
Качество изображения дополнительно улучшается также за счет получения непрерывного пространства наблюдения стереоизображения (без разрыва в середине поля зрения) вследствие непрерывности сплошного ЖК слоя БПДФ 9 и примыкания друг к другу двух смежных зон сепарации в апертуре БПДФ 9, ведущего к отсутствию светонепроницаемой перегородки в поле зрения между глазами (неизменно присутствующей в стереоочках с двумя раздельными окнами наблюдения и раздельными поляризационными фильтрами).
Наблюдение стереоизображений с полноэкранным разрешением в каждом ракурсном изображении отображаемой 3D сцены обеспечивается без мерцаний даже при минимальной (для ЖК экранов) кадровой частоте 60 Гц, поскольку сепарация левого и правого ракурсных изображений происходит одновременно в двух зонах сепарации БПДФ 9 за счет статического поляризационного декодирования двух ракурсных изображений, совместно представленных в едином световом потоке за счет комбинации модуляции интенсивности и поляризации светового потока.
При этом для выполнения матрично-адресуемого АСИ 5 и матрично-адресуемого ЖК экрана ПКОИ 6 можно использовать ЖК матрицы практически любого типа, поскольку функцию поляризационного кодирования возможно определить в том числе измерительно-калибровочным методом [3] без знания физического механизма работы (структуры ЖК слоя) пикселя конкретных ЖК матриц и без соответствующего аналитического вычисления требуемой функции поляризационного кодирования. Измерительно-калибровочный метод позволяет при этом автоматически учесть все нелинейности передаточных функций оптоэлектронных каналов передачи информации от электронного выхода источника стереовидеосигнала до оптических выходов обеих зон сепарации.
АСИ 5 также может быть выполнен в виде матрицы любого типа, осуществляющей формирование изображение путем модуляции интенсивности света (например, в виде OLED-экрана).
ЛИТЕРАТУРА
1. Ежов В.А. Способ наблюдения стереоизображений с полным разрешением для каждого ракурса и устройство для его реализации // Патент РФ № 2377623, приоритет 20.04. 2007, опублик. 27.12.2009.
2. Ежов В.А. Способ наблюдения стереоизображений с объединенным предъявлением ракурсов и устройство для его реализации // Патент РФ № 2306680, приоритет 13.03.06, опублик. 20.09.2007 (прототип).
3. Ежов В.А. Способ формирования и наблюдения стереоизображений с максимальным пространственным разрешением и устройство для его реализации (варианты) // Патент РФ № 2408163, приоритет 25.12.2008, опублик. 27.12.2010.
Изобретение относится к технике наблюдения стереоизображений трехмерных сцен c полноэкранным разрешением в каждом ракурсе без использования стереоочков. Технический результат – повышение качества стереоизображения. Технический результат достигается увеличением контраста сепарации ракурсных изображений за счет взаимной компенсации остаточных эффектов двупреломления и оптической активности в жидкокристаллических слоях матричного поляризационного кодировщика изображений и поляризационно-декодирующего бинокулярного фильтра. При этом обеспечивается широкая (ограниченная только апертурой поляризационно-декодирующего фильтра) область наблюдения стереоизображения за счет возможности сдвига вертикальной границы между двумя зонами сепарации синхронно со смещением центров окон наблюдения (центров зрачков глаз наблюдателя). 4 з.п. ф-лы, 10 ил.
1. Стереоскопический дисплей с амплитудно-поляризационным формирователем полноэкранных ракурсных изображений, содержащий источник стереовидеосигнала, функциональный блок и последовательно оптически связанные источник светового потока, матрично-адресуемый амплитудный сумматор изображений, поляризационный кодировщик отношения изображений, снабженный матрично-адресуемым жидкокристаллическим экраном, и по меньшей мере один поляризационный декодирующий фильтр, две зоны сепарации которого оптически сопряжены с двумя окнами наблюдения, при этом информационный выход источника стереовидеосигнала соединен с входом функционального блока, выход суммирующей секции которого подключен к электронному входу амплитудного сумматора изображений, а выход делительной секции функционального блока подключен к электронному входу поляризационного кодировщика отношения изображений, причем соединенные вместе входы суммирующей и делительной секций являются входом функционального блока, а жидкокристаллический экран поляризационного кодировщика отношения изображений содержит последовательно оптически связанные входной линейный поляризатор и информационный жидкокристаллический слой, отличающийся тем, что каждый поляризационный декодирующий фильтр выполнен в виде бинокулярного поляризационно-декодирующего фильтра, содержащего блок управления и последовательно оптически связанные декодирующий жидкокристаллический слой и выходной линейный поляризатор, ось поляризации которого ортогональна оси поляризации входного линейного поляризатора жидкокристаллического экрана, декодирующий жидкокристаллический слой снабжен группой адресных прозрачных электродов, электрические входы которых подключены к выходу блока управления, а суммарная апертура группы адресных прозрачных электродов равна суммарной апертуре пары смежных зон сепарации, вертикальная граница между которыми соответствует вертикальной границе между соответствующими смежными адресными прозрачными электродами, при этом остаточная оптическая анизотропия декодирующего жидкокристаллического слоя равна по абсолютной величине и противоположна по знаку остаточной диэлектрической анизотропии информационного жидкокристаллического слоя.
2. Дисплей по п. 1, отличающийся тем, что каждый из жидкокристаллических слоев выполнен с закруткой жидкокристаллических молекул на 90° или 270°, при этом направление закрутки в информационном жидкокристаллическом слое противоположно направлению закрутки в декодирующем жидкокристаллическом слое, ось для обыкновенного (необыкновенного) луча на выходе информационного жидкокристаллического слоя ортогональна оси для обыкновенного (необыкновенного) луча на входе декодирующего жидкокристаллического слоя, а ось поляризации выходного линейного поляризатора параллельна оси для обыкновенного (необыкновенного) луча декодирующего жидкокристаллического слоя.
3. Дисплей по п. 1, отличающийся тем, что информационный жидкокристаллический слой и декодирующий жидкокристаллический слой выполнены с гомогенной ориентацией жидкокристаллических молекул, при этом ось для обыкновенного (необыкновенного) луча информационного жидкокристаллического слоя ортогональна оси для обыкновенного (необыкновенного) луча декодирующего жидкокристаллического слоя, а ось поляризации выходного линейного поляризатора направлена под углом 45° к оси для обыкновенного (необыкновенного) луча декодирующего жидкокристаллического слоя.
4. Дисплей по п. 1, или 2, или 3, отличающийся тем, что группа адресных прозрачных электродов выполнена в виде первого и второго адресных прозрачных электродов, апертуры которых равны апертурам первой и второй зон сепарации.
5. Дисплей по п. 1, или 2, или 3, отличающийся тем, что блок управления выполнен с позиционным сенсором, а группа адресных прозрачных электродов выполнена в виде группы столбцовых адресных прозрачных электродов, период расположения которых задан шагом горизонтального позиционирования вертикальной границы между двумя зонами сепарации.
СПОСОБ НАБЛЮДЕНИЯ СТЕРЕОИЗОБРАЖЕНИЙ С ОБЪЕДИНЕННЫМ ПРЕДЪЯВЛЕНИЕМ РАКУРСОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2006 |
|
RU2306680C1 |
БЕЗОЧКОВАЯ СТЕРЕОСКОПИЧЕСКАЯ ВИДЕОСИСТЕМА С ДИСТАНЦИОННЫМ БИНОКУЛЯРНЫМ ФИЛЬТРОМ | 2015 |
|
RU2604210C2 |
Способ формирования многопланового изображения и мультифокальный стереоскопический дисплей | 2015 |
|
RU2609285C9 |
Способ термической обработки деталейиз диСпЕРСиОННО-ТВЕРдЕющиХ СплАВОВ | 1978 |
|
SU836145A1 |
Авторы
Даты
2019-03-05—Публикация
2018-04-23—Подача