СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА Российский патент 2019 года по МПК C25D11/26 A61F2/02 

Описание патента на изобретение RU2681329C1

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, а именно к анодированию тугоплавких металлов или их сплавов и может быть использовано в травматологии, ортопедии и стоматологии.

Известен способ нанесения покрытия на имплантат из титана и его сплавов [RU 2221904 С1, МПК (2000.01) C25D 11/26, A61F 2/02, опубл. 20.01.2004], выбранный в качестве прототипа, включающий анодирование имплантата импульсным или постоянным током в условиях искрового разряда при напряжении 90-200 В с частотой следования импульсов 0,5-10,0 Гц при температуре 20-35°С в растворе фосфорной кислоты в течение 10-30 мин при постоянном перемешивании. Анодирование ведут в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния, или в растворе фосфорной кислоты с концентрацией 5-25%, содержащем порошок СаО до пересыщенного состояния и дополнительно 5-10% суспензии гидроксиапатита дисперсностью менее 70 мкм для создания суспензии.

Толщина полученных покрытий составляет 5-40 мкм.

Техническим результатом предложенного изобретения является разработка способа формирования покрытия на имплантате из сплава титана, позволяющего получить эластичные и пористые покрытия.

Способ формирования покрытия на имплантате из сплава титана, также как в прототипе включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, состоящем из раствора фосфорной кислоты с концентрацией 10%, порошка СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм.

Согласно изобретению анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в электролите, дополнительно содержащем 2,5-15 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%.

Предложенный способ формирования покрытия на имплантате из сплавов титана позволяет получить пористые покрытия с эластичностью 1 мм, толщиной 2-5 мкм. Количество пор на 1500 мкм2 составляет от 3925±535 до 8311±736 шт. с диаметром пор на поверхности покрытий от 0,6±0,3 до 0,8±0,3 мкм.

Таким образом, полученные покрытия по сравнению с прототипом обладают большим количеством и диаметром пор, что способствует лучшей интеграции имплантата в живой организм. Эластичность покрытий увеличена минимум на 6 мм. Количество пор увеличено на 393-4779 шт. на 1500 мкм2, а диаметр пор на поверхности покрытий - на 0,1-0,3 мкм.

На фиг. 1-4 приведены снимки поверхности покрытия на имплантате, сформированного предложенным способом.

На фиг. 5 приведен снимок поверхности покрытия на имплантате, сформированного способом-прототипом.

В таблице 1 представлены результаты осуществления способа.

Использовали имплантаты размером 50×20×0,5 мм3 из сплава титана ВТ-6, которые для удаления оксидной пленки и загрязнений подвергали травлению в водном растворе азотной и плавиковой кислот, взятых в объемных отношениях HN:HF:H2O=1:2,5:2,5, при температуре 15-20°С в течение 10-15 секунд с последующей нейтрализацией в 1% водном растворе гидроксида натрия и многократной промывкой дистиллированной водой.

Пример 1

Для получения электролита подготовили раствор фосфорной кислоты с концентрацией 10%, к которому добавили порошок СаО до пересыщенного состояния, 10% порошок гидроксиапатита дисперсностью менее 70 мкм, и 2,5 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в 4,5% уксусной кислоте.

Полученный электролит вылили в электролитическую ванну, поместили в нее подготовленный имплантат и формировали покрытие с использованием установки для микродугового оксидирования [https://doi.org/10.1063/1.5001611].

Через раствор пропустили ток положительной полярности с напряжением 170 В со скоростью подъема напряжения 1 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 15 минут. Процесс вели при температуре 10°С при постоянном перемешивании.

После формирования покрытия, имплантат извлекли из электролитической ванны, промыли под проточной водой в течение 15 минут и прокипятили в дистиллированной воде в течение часа. После извлечения из дистиллированной воды поверхность имплантата осушили безворсовой салфеткой и поместили в воздушный стерилизатор для окончательного выпаривания влаги при температуре 105°С в течение 30 минут.

Исследование морфологии поверхности покрытия имплантата провели с помощью сканирующей электронной микроскопии, используя электронный микроскоп JEOL-6000. Морфология полученной поверхности покрытия показана на снимке, представленном на фиг. 1.

Измерение диаметра и подсчет количества пор на полученном снимке было проведено с помощью программы «ImageJ». Количество пор составило 3925±535 шт. на 1500 мкм2. Диаметр пор составил 0,6±0,3 мкм (таблица 1). Эластичность полученного покрытия, измеренная с использованием прибора «Изгиб», составила 1 мм. Толщина покрытия, измеренная с помощью прибора для измерения геометрических параметров КОНСТАНТА К5, составила 2 мкм.

Пример 2.

Состав используемого электролита, отличался от примера 1, использованием 5 мас. % раствора хитозана. Покрытие формировали при напряжении 180 В со скоростью подъема напряжения 2 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 20 минут. Процесс вели при температуре 15°С. На фиг. 2 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 3.

Состав используемого электролита, отличался использованием 10 мас. % раствора хитозана. Покрытие формировали при напряжении 190 В со скоростью подъема напряжения 3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 20 минут. Процесс вели при температуре 20°С. На фиг. 3 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 4.

Состав используемого электролита, отличался от приведенного в примере 1, использованием 15 мас. % раствора хитозана. Покрытие формировали при напряжении 200 В со скоростью подъема напряжения 3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс в течение 30 минут. Процесс вели при температуре 10°С. На фиг. 4 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

Пример 5.

Для нанесения покрытия по способу-прототипу подготовили раствор электролита, состоящий из фосфорной кислоты с концентрацией 10%, к которому добавили порошок СаО до пересыщенного состояния и 10% порошок гидроксиапатита дисперсностью менее 70 мкм.

Полученный электролит вылили в электролитическую ванну, поместили в нее подготовленный имплантат и формировали покрытие с использованием установки для микродугового оксидирования. Через раствор пропустили ток положительной полярности с напряжением 200 В, с частотой следования импульсов 10 Гц в течение 30 минут. Процесс вели при температуре 20°С при постоянном перемешивании. На фиг. 5 показана морфология полученного покрытия. В таблице 1 приведены результаты исследования полученного покрытия.

СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА

Похожие патенты RU2681329C1

название год авторы номер документа
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТ ИЗ ТИТАНА И ЕГО СПЛАВОВ 2002
  • Игнатов В.П.
  • Верещагин В.И.
  • Шахов В.П.
  • Мишунина Н.В.
  • Петровская Т.С.
RU2221904C1
КАЛЬЦИЙ-ФОСФАТНОЕ ПОКРЫТИЕ НА ТИТАНЕ И ТИТАНОВЫХ СПЛАВАХ И СПОСОБ ЕГО НАНЕСЕНИЯ 2005
  • Шашкина Галина Алексеевна
  • Шаркеев Юрий Петрович
  • Колобов Юрий Романович
  • Карлов Анатолий Викторович
RU2291918C1
КАЛЬЦИЙ-ФОСФАТНОЕ БИОЛОГИЧЕСКИ АКТИВНОЕ ПОКРЫТИЕ НА ИМПЛАНТАТЕ 2012
  • Игнатов Виктор Павлович
  • Твердохлебов Сергей Иванович
  • Степанов Игорь Борисович
  • Сивин Денис Олегович
RU2507316C1
КАЛЬЦИЙ-ФОСФАТНОЕ БИОЛОГИЧЕСКИ АКТИВНОЕ ПОКРЫТИЕ НА ИМПЛАНТАТЕ И СПОСОБ ЕГО НАНЕСЕНИЯ 2009
  • Твердохлебов Сергей Иванович
  • Игнатов Виктор Павлович
  • Степанов Игорь Борисович
  • Сивин Денис Олегович
  • Шахов Владимир Павлович
RU2423150C1
Способ получения модифицированного биопокрытия на имплантате из титана (варианты) 2019
  • Шаркеев Юрий Петрович
  • Седельникова Мария Борисовна
  • Комарова Екатерина Геннадьевна
  • Чебодаева Валентина Вадимовна
  • Толкачева Татьяна Викторовна
  • Бакина Ольга Владимировна
RU2693468C1
Способ получения модифицированного биопокрытия с наночастицами Fe-Cu на имплантате из титана 2021
  • Шаркеев Юрий Петрович
  • Седельникова Мария Борисовна
  • Чебодаева Валентина Вадимовна
  • Бакина Ольга Владимировна
RU2771813C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТ ИЗ ТИТАНА И ЕГО СПЛАВОВ 1999
  • Карлов А.В.
  • Шахов В.П.
  • Игнатов В.П.
  • Верещагин В.И.
RU2159094C1
Способ нанесения синтетического биоактивного кальций-фосфатного минерального комплекса на имплантаты медицинского назначения 2015
  • Марков Александр Анатольевич
  • Соколюк Александр Анатольевич
RU2606366C1
ПОКРЫТИЕ НА ИМПЛАНТАТ ИЗ ТИТАНА И ЕГО СПЛАВОВ И СПОСОБ ЕГО НАНЕСЕНИЯ 1999
  • Карлов А.В.
  • Шахов В.П.
  • Игнатов В.П.
  • Верещагин В.И.
  • Налесник О.И.
RU2154463C1
СПОСОБ НАНЕСЕНИЯ БИОАКТИВНОГО НАНО- И МИКРОСТРУКТУРИРОВАННОГО КАЛЬЦИЙФОСФАТНОГО ПОКРЫТИЯ НА ИМПЛАНТАТ ИЗ ТИТАНА И ЕГО СПЛАВОВ 2010
  • Петровская Татьяна Семеновна
  • Шахов Владимир Павлович
  • Верещагин Владимир Иванович
  • Игнатов Виктор Павлович
RU2444376C1

Иллюстрации к изобретению RU 2 681 329 C1

Реферат патента 2019 года СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТЕ ИЗ СПЛАВА ТИТАНА

Изобретение относится к области гальванотехники, в частности к анодированию сплавов титана, и может быть использовано в травматологии, ортопедии и стоматологии. Способ включает анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, содержащем раствор фосфорной кислоты с концентрацией 10%, порошок СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм, при этом электролит дополнительно содержит 2,5-15 мас.% раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%, а анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс. Технический результат: получение эластичных и пористых покрытий на имплантате. 5 ил., 1 табл., 5 пр.

Формула изобретения RU 2 681 329 C1

Способ формирования покрытия на имплантате из сплава титана, включающий анодирование имплантата импульсным током в условиях искрового разряда при напряжении 170-200 В и температуре 10-20°С в течение 15-30 мин при постоянном перемешивании в электролите, состоящем из раствора фосфорной кислоты с концентрацией 10%, порошка СаО до пересыщенного состояния и 10% порошка гидроксиапатита дисперсностью менее 70 мкм, отличающийся тем, что электролит дополнительно содержит 2,5-15 мас. % раствора хитозана, полученного при растворении сухого порошка хитозана в уксусной кислоте с концентрацией 4,5%, а анодирование ведут, пропуская ток положительной полярности со скоростью подъема напряжения 1-3 В/сек, с частотой следования импульсов 50 Гц и длительностью импульса 9,7 мс.

Документы, цитированные в отчете о поиске Патент 2019 года RU2681329C1

СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ИМПЛАНТАТ ИЗ ТИТАНА И ЕГО СПЛАВОВ 2002
  • Игнатов В.П.
  • Верещагин В.И.
  • Шахов В.П.
  • Мишунина Н.В.
  • Петровская Т.С.
RU2221904C1
Способ нанесения синтетического биоактивного кальций-фосфатного минерального комплекса на имплантаты медицинского назначения 2015
  • Марков Александр Анатольевич
  • Соколюк Александр Анатольевич
RU2606366C1
КАЛЬЦИЙ-ФОСФАТНОЕ ПОКРЫТИЕ НА ТИТАНЕ И ТИТАНОВЫХ СПЛАВАХ И СПОСОБ ЕГО НАНЕСЕНИЯ 2005
  • Шашкина Галина Алексеевна
  • Шаркеев Юрий Петрович
  • Колобов Юрий Романович
  • Карлов Анатолий Викторович
RU2291918C1
Пневматический аппарат для очистки котлов от накипи и грязи 1927
  • Шредер И.В.
SU10094A1

RU 2 681 329 C1

Авторы

Твердохлебов Сергей Иванович

Больбасов Евгений Николаевич

Игнатов Виктор Павлович

Солдатова Елена Александровна

Даты

2019-03-06Публикация

2018-07-02Подача