Изобретение относится к технологиям получения материалов нанометрового размера, состоящих из нанокристаллов силицида железа α-FeSi2 с контролируемо изменяемой преимущественной кристаллографической ориентацией, формой и габитусом, и может применяться для разработки новых функциональных элементов в спинтронике, нанотехнологии, к примеру служить буферными, ориентирующими слоями для последующего роста других материалов и фаз силицидов железа на подложках кремния промышленно используемой ориентации Si(001), в частности β-FeSi2, для понижения напряжений и плотности дефектов в последнем. Посредством изменения преимущественной кристаллографической ориентации и напряжений кристаллической решетки нанокристаллов α-FeSi2, вызванных рассогласованием кристаллических решеток силицида α-FeSi2 и кремния возможно контролируемое увеличение намагниченности системы. Кроме того, нанокристаллы α-FeSi2 могут быть использованы в качестве омического контакта к кремнию, где нижний температурный предел существования омического контакта может изменяться варьированием преимущественной ориентации нанокристаллов α-FeSi2 на кремнии. Эффект достигается через изменение высоты барьера Шоттки, формируемого на интерфейсе силицид/кремний.
Фаза α-FeSi2 относится к тетрагональной кристаллической системе (P4mmm) с параметрами решетки а, b=2,684 , с=5,128 , где атомы Fe образуют квазидвумерную структуру и расположены в плоскостях α {001} разделенных двумя плоскостями, образованными атомами кремния. Парамагнитная и метастабильная в объемных условиях фаза α-FeSi2 в наномасштабе, как сообщается, может демонстрировать ферромагнитные свойства с намагниченностью выше чем чистое железо. Наряду с этим считается, что такие квазидвумерные соединения, как α-FeSi2, могут обнаруживать высокотемпературную сверхпроводимость.
Известен способ получения нанокристаллов силицида металла [патент US 2008211039 А1, МПК H01L 21/44, H01L 29/78, опубл. 04.09.2008] путем низко и высокотемпературного отжига металлической пленки, предварительно осажденной на поверхность диэлектрической пленки, содержащей кремний.
Существует способ получения пленки α-FeSi2 на поверхности подложки кремния [патент CN 101337676 А, МПК С01В 33/06, опубл. 07.01.2009] путем воздействия лазерным излучением на предварительно осажденный слой железа или силицида железа β-FeSi2. Этот способ достаточно эффективен для получения точечного омического контакта для микроэлектронных устройств на основе β-FeSi2 и позволяет легко контролировать площадь, занимаемую фазой α-FeSi2. Однако данный способ не обладает возможностью выбора кристаллографической ориентации формируемой фазы α-FeSi2, а также не позволяет формировать отдельностоящие нанокристаллы различной огранки.
Известен способ получения нанокристаллов силицида железа α-FeSi2 с изменяемой преимущественной ориентацией [R.V. Pushkarev, N.I. Fainer, Н. Katsui and others. Structural features and surface composition of epitaxial α-FeSi2 films obtained by CVD. - Mater. Des., 2018, 137, 422-429], включающий предварительную химическую подготовку поверхности подложки кремния в водном растворе плавиковой кислоты и ее очистку путем отжига при 840-900°С,
Недостатком этого способа является низкая плотность упаковки нанокристаллов силицида железа α-FeSi2 на поверхности кремния и тенденция к формированию сплошной пленки при увеличении температуры, которая является ключевым параметром для контроля преимущественной ориентации. Кроме того, данный способ не позволяет проводить синтез нанокристаллов силицида железа α-FeSi2 с кристаллографическими ориентационными соотношениями, отличающимися от α-FeSi2(001)//Si(001) и α-FeSi2(111)//Si(001), α-FeSi2(102)//Si(001). Так, способ не располагает возможностью получения нанокристаллов с ориентационными соотношениями α-FeSi2(110)//Si(001) и α-FeSi2(211)//Si(001), α-FeSi2(100)//Si(001), где Si(001) является базовым срезом подложки. Также отсутствует возможность изменения огранки и габитуса нанокристалла α-FeSi2 с одинаковым кристаллографическим ориентационным соотношением. Применяемый метод приводит к загрязнению поверхности различными веществами, такими как SiC, SiO2, Fe2O3 и С.
Наиболее близким аналогом, принятым за прототип, является способ получения нанокристаллов силицида железа α-FeSi2 с изменяемой преимущественной ориентацией [TARASOV I.A. et al, Growth of α-FeSi2 nanocrystals on si(100) with Au catalyst, «Materials Letters», 2016, Vol. 168, pp. 90-94], включающий предварительную химическую подготовку поверхности подложки кремния в водном растворе плавиковой кислоты и ее очистку путем отжига при 840-900°С, осаждение слоя золота на подложку при комнатной температуре методом термического испарения в сверхвысоком вакууме, повышение температуры подложки до 840°С и соосаждение железа и кремния.
Недостатки способа заключаются в отсутствии возможности контролируемого изменения преимущественной кристаллографической ориентации нанокристаллов α-FeSi2, а также изменения их преимущественных формы и огранки.
Задачей, на решение которой направлено заявляемое изобретение, является разработка способа получения нанокристаллов α-FeSi2 с заданным кристаллографическим ориентационным соотношением, огранкой и габитусом методом термического осаждения в условиях сверхвысокого вакуума.
Техническим результатом заявляемого изобретения является способ получения нанокристаллов α-FeSi2 на поверхности кремния, в котором существует возможность контролируемого получения нанокристаллов α-FeSi2 с различными преимущественными кристаллографическими ориентационными соотношениями и изменяемой огранкой и формой нанокристалла α-FeSi2, для одного и того же ориентационного соотношения.
Технический результат достигается тем, что в способе получения нанокристаллов силицида железа α-FeSi2 с изменяемой преимущественной ориентацией, включающем предварительную химическую подготовку поверхности подложки кремния в водном растворе плавиковой кислоты и ее очистку путем отжига при 840-900°С, осаждение слоя золота на подложку при комнатной температуре методом термического испарения в сверхвысоком вакууме, повышение температуры подложки до 840°С и соосаждение железа и кремния, новым является то, что используют подложки кремния ориентацией Si(001), а соосаждение осуществляют с изменяемым атомным соотношением железа к кремнию от 1:2 до 3:1, соответственно.
Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявляемое изобретение отличается от известного тем, что нанокристаллы силицида железа формируются в результате термического осаждения железа, или соосаждения железа и кремния в условиях сверхвысокого вакуума на подложке кремния с ориентацией Si(001) и соосаждение осуществляют с изменяемым атомным соотношением железа к кремнию от 1:2 до 3:1, соответственно. Признаки, отличающие заявляемое решение от прототипа, обеспечивают заявляемому техническому решению соответствие критерию «новизна».
Признаки, отличающие заявляемое решение от прототипа не выявлены при изучении других известных технических решений в данной области техники и, следовательно, обеспечивают ему соответствие критерию «изобретательский уровень».
Сущность изобретения поясняется чертежами и таблицей. На фиг. 1 представлены микрофотографии поверхности кремния Si(001) со сформированными нанокристаллами α-FeSi2 при различных технологических условиях, фиг. 1а соответствует нанокристаллам α-FeSi2, полученным в присутствии золота на поверхности кремния при соотношении атомарных потоков Fe(1):Si(2), фиг. 1b - в присутствии золота на поверхности кремния при соотношении атомарных потоков Fe(3):Si(1), фиг. 1с демонстрирует увеличенный вид некоторых нанокристаллов α-FeSi2 на фиг. 1а, фиг. 1с - увеличенный вид некоторых нанокристаллов α-FeSi2 на фиг. 1b, фиг. 1е - в отсутствии золота на поверхности кремния при соотношении атомарных потоков Fe(1):Si(2), фиг. 1f - в отсутствии золота на поверхности кремния при соотношении атомарных потоков Fe(3):Si(1), фиг. 1g демонстрирует увеличенный вид некоторых нанокристаллов α-FeSi2 на фиг. 1е, фиг. 1h - увеличенный вид некоторых нанокристаллов α-FeSi2 на фиг. 1f. На фиг. 2 - схематическое изображение форм и огранки, габитуса нанокристаллов α-FeSi2, получаемых в ориентационном соотношении α(001)[010]//Si(001)[010] и α(001)[010]//Si(001)[110]. На фиг. 3, в качестве примера показано схематическое изображение механизма образования нанокристаллов α-FeSi2 в виде нанопластин с ориентационным соотношением α(001)//Si(001). Таб. 1 содержит информацию об изменении объемной доли нанокристаллов α-FeSi2 с определенным ориентационным соотношением для различных условий формирования.
Сущность изобретения заключается в проведении реакции силицидообразования на поверхности кремния, активированной/неактивированной золотом в неравновесных условиях при совместном осаждении железа и кремния в условиях сверхвысокого вакуума (1×10-6 Па) с изменяемым отношением атомарных потоков железа к кремнию от 1:2 до 1:0 при повышенных температурах. Формирование желаемого преимущественного ориентационного соотношения происходит через изменение поверхностной энергии и энергии интерфейса нанокристаллов α-FeSi2, для изменения формы и габитуса нанокристаллов α-FeSi2 применяется соосаждение железа и кремния с изменяемым атомным соотношением железа к кремнию от 1:2 до 1:0, направленное на регулировку доли атомов кремния из подложки, участвующих в процессе силицидообразования. Варьируя соотношения в указанном диапазоне можно управлять преимущественной формой и огранкой, габитусом, формирующихся нанокристаллов. Например, увеличение доли железа в осаждаемом атомарном потоке железа на поверхность кремния, активированную золота, приводит к преимущественному формированию нанокристаллов α-FeSi2 в виде пластин с плоской атомарно-чистой поверхностью α(001).
Пример осуществления
Получение нанокристаллов α-FeSi2 с преимущественными ориентационными соотношениями α(001)//Si(001) и α(111)//Si(001) и изменяемыми преимущественными формой и огранкой, габитусом.
I. Нанокристаллы α-FeSi2 с преимущественным ориентационным соотношением α(001)//Si(001) и преимущественным габитусом в виде тетраэдра изготавливались в следующей технологической последовательности:
1) Предварительная подготовка поверхности подложки кремния ориентации Si(001) в водном растворе плавиковой кислоты.
2) Получение атомарно-чистой поверхности кремния Si(001) с реконструкцией 2×1 путем отжига подложки при 840-900°С.
3) Осаждение методом термического испарения в сверхвысоком вакууме в камере молекулярно-лучевой эпитаксии слоя золота на поверхность Si(001)2×1 при комнатной температуре, при скорости осаждения порядка 0,3 нм/мин. Эффективная толщина слоя золота 1 nm.
4) Повышение температуры подложки до 840°С
5) Соосаждение железа и кремния на поверхность кремния, активированную золотом, при атомарном соотношением железа к кремнию 1:2, в течение 60 минут, при скоростях осаждения 0,1 нм/мин и 0,34 нм/мин для железа и кремния, соответственно.
II. Нанокристаллы α-FeSi2 с преимущественным ориентационным соотношением α(001)//Si(001) и преимущественным габитусом в виде усеченной четырехугольный пирамиды/бипирамиды с высоким характеристическим отношением изготавливались в следующей технологической последовательности:
1) Предварительная подготовка поверхности подложки кремния ориентации Si(001) в водном растворе плавиковой кислоты.
2) Получение атомарно-чистой поверхности кремния Si(001) с реконструкцией 2×1 путем отжига подложки при 840-900°С.
3) Осаждение методом термического испарения в сверхвысоком вакууме в камере молекулярно-лучевой эпитаксии слоя золота на поверхность Si(001)2×1 при комнатной температуре, при скорости осаждения порядка 0,3 нм/мин. Эффективная толщина слоя золота 1 nm.
4) Повышение температуры подложки до 840°С
5) Соосаждение железа и кремния на поверхность кремния, активированную золотом, при атомарном соотношением железа к кремнию 3:1, в течение 60 минут, при скоростях осаждения 0,22 нм/мин и 0,13 нм/мин для железа и кремния, соответственно.
III. Нанокристаллы α-FeSi2 с преимущественным ориентационным соотношением α(111)//Si(001) и преимущественным габитусом в виде трапезоидной призмы изготавливались в следующей технологической последовательности:
1) Предварительная подготовка поверхности подложки кремния ориентации Si(001) в водном растворе плавиковой кислоты.
2) Получение атомарно-чистой поверхности кремния Si(001) с реконструкцией 2×1 путем отжига подложки при 840-900°С.
3) Установление температуры подложки на уровне 840°С
4) Соосаждение железа и кремния на поверхность кремния, активированную золотом, при атомарном соотношением железа к кремнию 1:2, в течение 60 минут, при скоростях осаждения 0,1 нм/мин и 0,34 нм/мин для железа и кремния, соответственно.
IV. Нанокристаллы α-FeSi2 со слабой огранкой с преимущественным ориентационным соотношением α(111)//Si(001) изготавливались в следующей технологической последовательности:
1) Предварительная подготовка поверхности подложки кремния ориентации Si(001) в водном растворе плавиковой кислоты.
2) Получение атомарно-чистой поверхности кремния Si(001) с реконструкцией 2×1 путем отжига подложки при 840-900°С.
3) Установление температуры подложки на уровне 840°С
4) Соосаждение железа и кремния на поверхность кремния, активированную золотом, при атомарном соотношением железа к кремнию 3:1, в течение 60 минут, при скоростях осаждения 0,22 нм/мин и 0,13 нм/мин для железа и кремния, соответственно.
Полученные нанокристаллы α-FeSi2 с различными преимущественными ориентационными соотношениями к подложке кремния Si(001) и различными преимущественной формой и огранкой, габитусом изучались на растровом электронном микроскопе Hitachi S-5500, анализ доли нанокристаллов α-FeSi2 с тем или иным ориентационными соотношением проводился методом рентгеноструктурного анализа на дифрактометре PANalytical PRO, оборудованном твердотельным детектором PIXcel. На фиг. 1 видно, что поверхность подложки кремния содержит нанокристаллы α-FeSi2, изменение технологических условий роста приводит к изменению преимущественной формы и огранки, габитуса нанокристаллов α-FeSi2 и их преимущественного кристаллографического ориентационного соотношения (см. таб. 1). Анализ поверхностной энергии граней кристалла α-FeSi2 (001) и (111), покрытых золотом и свободными от него методами квантового химического моделирования показал, что присутствие золота уменьшает поверхностную энергию грани α(111) с 9,54 до 7,77 эВ/нм2, тогда как в случае грани α(001) - увеличивает с 8,23 до 12,74 эВ/нм2. На фиг. 3 представлен механизм формирования нанокристаллов α-FeSi2 с ориентационным соотношением α(001)//Si(001) и габитусом в виде усеченной четырехугольный бипирамиды с высоким характеристическим отношением, основанный на результатах выполненного квантового химического моделирования.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения суперпарамагнитных наночастиц на основе силицида железа FeSi с модифицированной поверхностью | 2019 |
|
RU2713598C1 |
Способ получения гибридных нанокристаллов AuFe/Fe и интерметаллических нанокристаллов AuFe с контролируемым латеральным размером | 2020 |
|
RU2747433C1 |
Способ формирования массива ферромагнитных нанопроволок на ступенчатой поверхности полупроводниковых подложек с буферным слоем меди | 2016 |
|
RU2624836C1 |
СПОСОБ ФОРМИРОВАНИЯ УПОРЯДОЧЕННЫХ СТРУКТУР НА ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВЫХ ПОДЛОЖЕК | 2015 |
|
RU2593633C1 |
Рост GaN нанотрубок, активированный легирующей примесью Si на подложках Si с тонким буферным слоем AlN | 2016 |
|
RU2711824C1 |
Способ получения монослойного силицена | 2021 |
|
RU2777453C1 |
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК ДИСИЛИЦИДА СТРОНЦИЯ НА КРЕМНИИ | 2016 |
|
RU2620197C1 |
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНОЙ ПЛЕНКИ ДИСИЛИЦИДА ЕВРОПИЯ НА КРЕМНИИ | 2015 |
|
RU2615099C1 |
СПОСОБ ФОРМИРОВАНИЯ ЭПИТАКСИАЛЬНЫХ НАНОСТРУКТУР МЕДИ НА ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВЫХ ПОДЛОЖЕК | 2013 |
|
RU2522844C1 |
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА КРЕМНИИ | 2014 |
|
RU2557394C1 |
Изобретение относится к технологии получения материалов нанометрового размера, состоящих из нанокристаллов силицида железа α-FeSi2 с контролируемо изменяемой преимущественной кристаллографической ориентацией, формой и габитусом, и может применяться для разработки новых функциональных элементов в спинтронике и нанотехнологии. Способ получения нанокристаллов силицида железа α-FeSi2 с изменяемой преимущественной ориентацией включает предварительную химическую подготовку поверхности подложки кремния в водном растворе плавиковой кислоты и ее очистку путем отжига при 840-900°С, осаждение слоя золота на подложку кремния ориентацией Si(001) при комнатной температуре методом термического испарения в сверхвысоком вакууме, повышение температуры подложки до 840°С и соосаждение железа и кремния при атомном соотношении от 1:2 до 3:1. Техническим результатом изобретения является контролируемое получение нанокристаллов α-FeSi2 на поверхности кремния с различными преимущественными кристаллографическими ориентационными соотношениями, изменяемой огранкой и формой нанокристалла α-FeSi2 для одного и того же ориентационного соотношения. 3 ил., 1 табл., 4 пр.
Способ получения нанокристаллов силицида железа α-FeSi2 с изменяемой преимущественной ориентацией, включающий предварительную химическую подготовку поверхности подложки кремния в водном растворе плавиковой кислоты и ее очистку путем отжига при 840-900°С, осаждение слоя золота на подложку при комнатной температуре методом термического испарения в сверхвысоком вакууме, повышение температуры подложки до 840°С и соосаждение железа и кремния, отличающийся тем, что используют подложки кремния ориентацией Si(001), а соосаждение осуществляют с изменяемым атомным соотношением железа и кремния от 1:2 до 3:1 соответственно.
TARASOV I.A | |||
et al, Growth of α-FeSi 2 nanocrystals on si(100) with Au catalyst, "Materials Letters", 2016, Vol.168, pp.90-94 | |||
PUSHKAREV R.V | |||
et al, Structural features and surface composition of epitaxial α-FeSi 2 films obtained by CVD, "Materials & Design", 5 January 2018, Vol.137, pp.422-429 | |||
CHEVRIER J | |||
et al, Epitaxial Growth of α-FeSi 2 on Si(111) at Low Temperature, EPL (Europhysics Letters), 2007, Vol.22, No.6, p.449. |
Авторы
Даты
2019-03-11—Публикация
2018-02-08—Подача