Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано в диагностике цветоощущения, определении нарушений цветового зрения человека.
Цветовое восприятие обеспечивает центральная зона сетчатки, называемая макулярной областью. Имеются врожденные нарушения цветового зрения в значительной степени, ограничивающие различные виды профессиональной деятельности. В клинической практике для диагностики заболевания используются полихроматические таблицы Рабкина, а также аномалоскопы - приборы. Общим недостатком перечисленных тестов является то, что они используются для выявления грубых нарушений цветоощущения врожденного характера, и нет возможности уловить тонкие нарушения цветоощущения.
Известен способ диагностики приобретенных нарушений цветоощущения, включающий предъявление цветовых стимулов, отличающийся тем, что цветовые стимулы предъявляют с изменением длины волны, насыщенности, светлоты, причем в каждой точке поля зрения устанавливают зависимости каждого параметра с временем сенсомоторной реакции (СМР) и по увеличению времени СМР в условиях, уравненных по яркости стимулов и фона по сравнению с нормальными показателями, судят о наличии нарушения цветоощущения, (патент РФ №2192158, А61В 3/00, опубл. 10.11.2002 г.).
Недостатком данного способа является субъективность оценки предъявляемых стимулов. Скоростные возможности человека, особенно в их моторной части, являются в большей степени природными, поэтому сенсомоторная реакция имеют очень большой индивидуальный интервал.
Известен способ контроля качества цветового зрения, включающий формирование и предъявление испытуемому эталонного и тестового цветовых стимулов сложного спектрального состава и субъективное уравнивание испытуемым их цветности, отличающийся тем, что тестовый цветовой стимул формируют и предъявляют испытуемому в виде пространственно неоднородного по цветности поля, цветность каждой точки которого является функцией ее координат, в качестве эталонного цветового стимула предъявляют одноцветное поле, замещающее часть поля тестового цветового стимула, уравнивание цветовых стимулов производят путем изменения взаимного их расположения до совмещения эталонного цветового стимула с той частью поля тестового цветового стимула, где достигается, по представлению испытуемого, равенство цветности стимулов, после достижения такого равенства регистрируют координаты взаимного расположения цветовых стимулов, по которым судят о качестве цветового зрения (патент РФ №2102915, С1, опубл. 07.01.1998 г.).
Недостаток его заключается в субъективных ощущениях обследуемого и в значительной степени зависит от гностической части, то есть на распознавании, а не цветовосприятии объектов.
Наиболее близким к предлагаемому изобретению является способ исследования цветоощущения. Сущность способа состоит в том, что исследуемому предъявляют тест-объект в виде световых кругов, соответствующих по цвету и спектральным характеристикам сигнальным огням дорожного светофора в виде трех рядов, по три круга в каждом с чередованием цветов в случайном порядке при обычной освещенности, при различной степени затемнения и при боковом двухстороннем засвете последовательно или в необходимом сочетании (патент РФ №2089091, С1, опубл. 31.07.1995)
Недостатком данного способа является исследование цветоощущения на основании субъективных признаков, а именно по ответу обследуемого. Результаты обследования могут быть аггравированы или симулированы. Также существенным фактором является использование спектральных характеристик сигнальным огням дорожного светофора, то есть использование светового диапазона без четко определенных границ. Поскольку видимый световой диапазон имеет интервал от 380 нм до 780 нм, стандартизировать данный способ весьма затруднительно.
Технический результат способа исследования цветового зрения человека заключается в повышение точности контроля качества цветового зрения, обеспечение возможности выявления малых и незначительных отклонений цветового зрения, а также сокращения времени измерения.
Технический результат достигается тем, что в способе исследования цветового зрения человека, основанном на анализе зрачковой реакции глаза, осуществляют воздействие на глаз сначала белым световым потоком, потом воздействуют световым потоком с длиной волны 671 нм, 546 нм и 435 нм, которые могут быть использованы как отдельно, так и последовательно, в равном или пропорциональном сочетании, собирают данные посредством видеофиксирующего оборудования, сравнивают с показателями зрачковой реакции глаза при воздействии белым световым потоком, судят о наличии нарушения цветоощущения.
В настоящее время общепризнанной теорией цветового восприятия является трехкомпонентная теория (Red, Green, Blue модель), при этом резонансными частотами чистого цвета является световой поток волн 671 нм, 546 нм и 435 нм. Количественная оценка возможна и в пределах цветовых диапазонов, соответствующих компонентному использованию цветовых монохроматических источников света. Зрачковый рефлекс заключается в изменении диаметра зрачков при воздействии света на сетчатку. Диаметр зрачков может варьироваться от 7,3 мм до 2 мм, а плоскость отверстия - от 52,2 мм2 до 3,94 мм2. Сужение начинается через 0,4-0,5 с после воздействия света. Анализ зрачковых реакций на световое воздействие производится по многим показателям: DN - начальный диаметр, DK - конечный диаметр, TL - латентный период реакции, TLC - латентный период сужения, АС - амплитуда сужения, ТС - время сужения, VC - скорость сужения, TLR - латентный период расширения, TR - время расширения, VR - скорость расширения, Т - общее время реакции, Кас - коэффициент асимметрии.
Предлагаемый способ реализуется следующим образом.
На лицевой части для обследуемого устанавливают светоизолирующие фиксаторы. Видеорегистрацию зрачковой реакции производят со скоростью не менее 30 кадров в секунду в диапазоне ближнего ИК, так и видимом диапазоне. Это позволяет сделать съемки зрачка обследуемого четкими, что в последующем дает возможность точно измерить и рассчитать описанные параметры.
Под видеоконтролем в ИК-диапазоне определяют время стабильного максимального расширения зрачка, затем осуществляют световое воздействие вышеуказанными длинами волн и определяют максимально выраженный эффект зрачковой реакции. Оценивают скорость зрачковой реакции как временной функции изменения диаметра зрачка.
После максимального расширения зрачка в условиях темновой адаптации производят световое воздействие, используя зрачковую фазу темновой адаптации. Учитывают индивидуальную длительность зрачковой фазы темновой адаптации, при этом основным показателем является стадия расширения зрачка до максимального значения. Световое воздействие производят последовательно, используя волны длиной 671 нм, 546 нм и 435 нм. Во время исследования происходит непрерывная видеорегистрации зрачковой реакции. Оптический и осветительный блок объединяют, и располагают относительно зрительной оси. Управление элементами устройства и обработку получаемых данных производят с помощью компьютерной программы.
Осветительный блок имеет несколько источников света с различной длиной волны: светодиодный источник, работающий в ближнем ИК-диапазоне, который необходим для получения изображений зрачка в условиях темновой адаптации; источники света с длиной волны 671 нм, 546 нм и 435 нм, которые могут быть использованы как отдельно, так и последовательно. Источники света имеют одинаковые параметры по интенсивности светового потока. Далее по полученным результатам непрерывной записи зрачковой реакции производится анализ по следующим параметрам:
DN - начальный диаметр, DK - конечный диаметр, TL - латентный период реакции, TLC - латентный период сужения, АС - амплитуда сужения, ТС - время сужения, VC - скорость сужения, TLR - латентный период расширения, TR - время расширения, VR - скорость расширения, Т - общее время реакции, Кас - коэффициент асимметрии.
При условии одинакового цветового восприятия, то есть нормального функционирования макулярной области сетчатки, зрачковая реакция для всех трех диапазонов является эквивалентной, а степень выраженности зрачковой реакции одинаковой, поскольку оцениваются как равнозначные стимулы.
В случае нарушения цветовосприятия в каком-либо из диапазонов, зрачковая реакция будет менее выраженной как по амплитуде диаметра и площади зрачка, так и скорости реакции, поскольку стимул будет снижен по отношению к сигналу в других диапазонах. Методика анализа получаемых данных осуществляется как по индивидуальным параметрам соотношения различных диапазонов цветового воздействия, так и по отношению к показателям статистической нормы с учетом возрастного показателя.
Сравнение результатов и определение диагностических показателей определяется по отношению к зрачковой реакции на белый цвет. Если зрачковая реакция на белый цвет и на воздействие света с длиной волны 671 нм, 546 нм и 435 нм, является одинаковой по всем показателям, то у обследуемого имеется нормальная трихромазия. В случае снижения показателей зрачковой реакции при воздействии длиной волны 671 нм, (красный свет) выявляется протоаномалия (аномальное восприятие красного света). Если имеется снижение показателей зрачковых реакций при воздействии длиной волны 546 нм дейтероаномалия (аномальное восприятие зеленого цвета). Если имеется снижение показателей зрачковых реакций при воздействии длиной волны 435 нм тританомалия (аномальное восприятие синего цвета).
В случае иных форм нарушения цветовосприятия, зрачковая реакция также будет менее выраженной как по амплитуде (диаметра и площади зрачка) так и скорости реакции. Методика анализа получаемых данных осуществляется как по индивидуальным параметрам соотношения различных диапазонов цветового воздействия, так и по отношению к показателям статистической нормы с учетом возрастного показателя. Последующая обработка полученных данных производится с помощью программ и статистического анализа. При этом изменение параметров зрачковой реакции должно иметь изменения значений не менее 15% по отношению к значениям в белом свете.
Способ позволяет реализовать несколько новых качеств:
- использовании иного способа получения цветового стимула, а именно проецировании непосредственно на макулярную область сетчатки монохроматического излучения,
- отсутствии влияния таких внешних факторов, как уровень освещенности, цветовой диапазон, баланс белого цвета, расстояние до объекта, качество полиграфического исполнения цветовых таблиц, изменений цветовых характеристик таблиц в течение времени,
- существенным отличием является отсутствие влияния оптических аберраций глаза человека и рефракционных показателей на результаты исследования,
- стандартизация и повторяемость условий исследования цветового зрения,
- объективизация данных обследования, основанная не на ответах обследуемого, а также возможность записи полученных данных в цифровом формате, что позволяет наблюдать изменения в динамике.
Пример 1. Обследуемый Б. 24 года проведено полное клиническое исследование, в результате которого установлен диагноз эмметропия, нормальная трихромазия. Тестирование производилось по таблицам Рабкина. Также было проведено исследование используя предлагаемый способ. Установлено, что зрачковая реакция одинакова во всех диапазонах по параметрам скорости и амплитуды. Заключение: нормальная трихромазия. Полученные данные представлены в таблице №1.
Таблица №1.
Пример 2.
Обследуемый В. 22 года. Жалобы на искажения цветовосприятия. При исследовании по таблицам Рабкина диагноз не определялся. Рефракция - эмметропия, изменений в структурах глаза при биомикроскопии переднего и заднего сегментов глаза не выявлено. При исследовании зрачковых реакций в диапазоне по (световой поток с длиной волны 671 нм, 546 нм и 435 нм) имеется снижение зрачковой реакции на 15% в диапазоне 671 нм (Таблица №2). Установлен диагноз протоаномалии.
Таблица №2.
Полученные данные свидетельствуют о том, что предложенный способ исследования цветового зрения человека позволяет повысить точность контроля качества цветового зрения, обеспечить возможность выявления малых и незначительных отклонений цветового зрения, а также сократить время проведения измерений.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для регистрации зрачковой реакции глаза | 2021 |
|
RU2771489C1 |
СПОСОБ ХРОМОПУПИЛЛОМЕТРИИ | 2012 |
|
RU2508898C2 |
Способ диагностики функционального состояния офтальмологических контактных линз и устройство для его осуществления | 2021 |
|
RU2778672C1 |
Способ выявления палочкового монохроматизма у детей | 2021 |
|
RU2777211C1 |
БЕСКОНТАКТНЫЙ ПУПИЛЛОМЕТР ДЛЯ СКРИНИНГ-ДИАГНОСТИКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ОРГАНИЗМА И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ | 2015 |
|
RU2604938C2 |
СПОСОБ РЕГИСТРАЦИИ ЗРАЧКОВЫХ РЕАКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1996 |
|
RU2123797C1 |
СПОСОБ ОЛЬФАКТОМЕТРИИ | 1995 |
|
RU2089093C1 |
СПОСОБ РЕГИСТРАЦИИ ЗРАЧКОВЫХ РЕАКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2207040C1 |
АЛГОРИТМ ДИАГНОСТИКИ ПРЕДИКТОРОВ ПОУГ У МОЛОДЫХ ЛИЦ С МИОПИЕЙ СЛАБОЙ И СРЕДНЕЙ СТЕПЕНИ | 2022 |
|
RU2793116C1 |
УСТРОЙСТВО ДЛЯ ДИАГНОСТИКИ ПАТОЛОГИИ ЗРИТЕЛЬНОЙ СИСТЕМЫ У ДЕТЕЙ ПО КРИТИЧЕСКОЙ ЧАСТОТЕ СЛИЯНИЯ МЕЛЬКАНИЙ | 2000 |
|
RU2196497C2 |
Изобретение относится к медицине, а именно к офтальмологии и лучевой диагностике, и может быть использовано для исследования цветового зрения человека. Анализируют зрачковую реакцию глаза. Осуществляют воздействие на глаз сначала белым световым потоком, потом – световыми потоками с длиной волны 671 нм, 546 нм и 435 нм с одинаковой интенсивностью, которые используют последовательно. Непрерывно собирают данные о зрачковой реакции глаза на световое воздействие посредством видеофиксирующего оборудования со скоростью съемки не менее 30 кадров в секунду. Сравнивают показатели зрачковой реакции глаза при воздействии белым световым потоком и световыми потоками с длиной волны 671 нм, 546 нм и 435 нм. При снижении таких показателей зрачковой реакции глаза, как AC, VC, TLR, TR, более чем на 15% диагностируют нарушение цветоощущения. Способ обеспечивает повышение точности контроля качества цветового зрения, обеспечение возможности выявления малых и незначительных отклонений цветового зрения, а также сокращения времени измерения за счет снижения AC, VC, TLR, TR более чем на 15% при сравнении воздействия белым световым потоком и световыми потоками с длиной волны 671 нм, 546 нм и 435 нм посредством видеофиксирующего оборудования. 2 табл., 2 пр.
Способ исследования цветового зрения человека, включающий анализ зрачковой реакции глаза, отличающийся тем, что осуществляют воздействие на глаз сначала белым световым потоком, потом воздействуют световыми потоками с длиной волны 671 нм, 546 нм и 435 нм с одинаковой интенсивностью, которые используют последовательно, непрерывно собирают данные о зрачковой реакции глаза на световое воздействие посредством видеофиксирующего оборудования со скоростью съемки не менее 30 кадров в секунду, сравнивают показатели зрачковой реакции глаза при воздействии белым световым потоком и световыми потоками с длиной волны 671 нм, 546 нм и 435 нм и при снижении таких показателей зрачковой реакции глаза, как AC, VC, TLR, TR, более чем на 15% судят о наличии нарушения цветоощущения.
СПОСОБ ХРОМОПУПИЛЛОМЕТРИИ | 2012 |
|
RU2508898C2 |
RU 2192158 С2, 10.11.2002 | |||
СПОСОБ КОНТРОЛЯ КАЧЕСТВА ЦВЕТОВОГО ЗРЕНИЯ | 1994 |
|
RU2102915C1 |
СПОСОБ ИССЛЕДОВАНИЯ ЦВЕТООЩУЩЕНИЯ | 1995 |
|
RU2089091C1 |
CN 106326582 A, 11.01.2017 | |||
Бакуткин И.В | |||
и др | |||
Возможности хромопупиллометрии в оценке функционального состояния органа зрения | |||
// Медицина труда и промышленная экология | |||
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса | 1924 |
|
SU2015A1 |
Прибор для исправления снимков рельефа местности | 1921 |
|
SU301A1 |
Tsimpri P | |||
et al | |||
[Investigation of Color Vision Using Pigment Color Plates and a Tablet PC] | |||
[Article in German] | |||
// Klin Monbl Augenheilkd | |||
Токарный резец | 1924 |
|
SU2016A1 |
Авторы
Даты
2019-03-12—Публикация
2017-07-21—Подача