СПОСОБ СУХОЙ КОНЦЕНТРАЦИИ АЛМАЗОСОДЕРЖАЩЕЙ РУДЫ Российский патент 2019 года по МПК B07B9/00 B07C5/34 

Описание патента на изобретение RU2681798C1

Изобретение относится к области добычи полезных ископаемых, а именно к первичной переработке сухого алмазосодержащего сырья непосредственно на месторождении.

Известен способ извлечения алмазов из алмазосодержащего сырья непосредственно в месте добычи (патент РФ №2094126, В03В 7/00, опубл. БИ №30, 1997 г.), включающий дезинтеграцию исходного сырья, классификацию дезинтегрированного сырья по классам крупности, первичное обогащение классифицированного сырья, дезинтеграцию получаемых промпродуктов с помощью планетарных мельниц самоизмельчения и/или валковых прессов и последующую доводку.

Однако этот способ не может обеспечить достаточно эффективную переработку сухого алмазосодержащего сырья, поскольку процесс дезинтеграции в планетарной мельнице и в валковом прессе сопровождается образованием рудных агломератов или кека, требующих дополнительных подготовительных операций для их разрушения, которые способствуют конденсатообразованию и увлажнению сырья. Кроме того, первичное обогащение осуществляется рентгенолюминесцентными сепараторами (РЛС) по одному разделительному признаку - свойству алмазов люминесцировать в видимом диапазоне спектра.

Известен способ сухой концентрации алмазосодержащей кимберлитовой руды непосредственно в месте добычи, реализованный в комплексе по патенту РФ №2247607 (МПК 7 В07В 9/00, приоритет 12.03.2003, опубл. БИ №7, 2005 г., патентообладатель АК "АЛРОСА" (ПАО)), включающий дезинтеграцию исходной руды крупностью 500 мм, классификацию дезинтегрированной руды и промпродуктов, дезинтеграцию промпродуктов с возвратом их на классификацию, классификацию подрешетного промпродукта на три класса крупности (-30+10 мм, -10+5 мм, -5+0 мм), раздельное обогащение каждого промпродукта в модулях обогащения в виде рентгенолюминесцентных сепараторов, при этом хвостовой продукт модуля крупного обогащения вместе с надрешетным промпродуктом модуля классификации дезинтегрированной исходной руды и промпродуктов поступает на дезинтеграцию, а мелкий промпродукт перед обогащением поступает на пневмоклассификацию, непродуктивный продукт которой направляется на аспирацию.

Однако применение раздельного обогащения промпродукта каждого класса крупности в модулях рентгенолюминесцентной сепарации осуществляется по одному разделительному признаку, а именно по свойству алмазов люминесцировать в видимом диапазоне спектра. Данное техническое решение также не обеспечивает высокого извлечения ценного компонента за счет наличия потерь, обусловленных техническими возможностями способа его обнаружения. Невысокая достоверность обнаружения алмазов приводит к извлечению сопутствующих минералов и не позволяет достичь высокого сокращения исходного материала и высокой кондиции концентрата на этой операции. В связи с этим требуются значительные затраты на дополнительное обогащение больших объемов получаемого концентрата.

Наиболее близким техническим решением является способ сухой концентрации руды, например алмазосодержащей кимберлитовой руды по патенту RU на изобретение №2356650 (МПК В07В 9/00 (2006.01), приоритет 24.07.2011, опубл. 27.05.2009 Бюл. №15, патентообладатель АК "АЛРОСА" (ПАО)). Он включает дезинтеграцию исходной руды, дезинтеграцию промпродукта, классификацию дробленой исходной руды, классификацию промпродуктов, последующее их обогащение по раздельным классам крупности с предварительной пневматической классификацией мелкого промпродукта, аспирацию. Дезинтеграцию исходной руды и дезинтеграцию промпродуктов проводят двустадиальным дроблением каждую. На вторую стадию дробления исходной руды направляют надрешетный продукт классификации дробленой исходной руды первой стадии дробления. Надрешетный продукт классификации промпродуктов направляют на вторую стадию дробления промпродуктов, а хвосты обогащения крупного и среднего классов направляют на первую, а затем на вторую стадию дробления промпродуктов. Вторую стадию дробления исходной руды и вторую стадию дробления промпродуктов проводят с помощью дробилок ударного действия, например роторных, а первую стадию дробления промпродуктов проводят с помощью дробилок объемного сжатия, например роллер-пресса.

Однако все вышеуказанные технические решения, включая прототип, предполагают проведение рудоподготовительных операций в замкнутом цикле с классификацией по классам +5 (10) мм. Многоцикличное додрабливание этих промпродуктов приводит к конденсатообразованию, увлажнению и агломерации материала перед обогащением. В результате этого обнаружить и извлечь алмазы, скрытые в агломератах, не представляется возможным, а постепенное налипание увлажненного материала на металлические поверхности и детали транспортирующих устройств приводит к запрессовкам трубопроводов и простоям оборудования. Кроме того, применение раздельного обогащения промпродукта каждого класса крупности в модулях рентгенолюминесцентной сепарации осуществляется только по одному разделительному признаку, а именно по свойству алмазов люминесцировать в видимом диапазоне спектра, что не обеспечивает высокое извлечение ценного компонента за счет наличия потерь, обусловленных техническими возможностями способа его обнаружения. Низкая достоверность обнаружения алмазов приводит к извлечению сопутствующих минералов и не позволяет достичь высокого сокращения исходного материала и высокой кондиции концентрата на этой операции. В связи с этим требуются значительные затраты на дополнительное обогащение больших объемов получаемого концентрата.

Техническими результатами заявляемого изобретения являются повышение извлечения алмазов, а также повышение достоверности обнаружения ценного компонента, что приводит к значительному сокращению объема концентрата, поступающего на дополнительное обогащение.

Указанные технические результаты достигаются тем, что в способе сухой концентрации алмазосодержащей руды, включающем двухстадиальную дезинтеграцию исходной руды дроблением, классификацию дробленой руды с направлением надрешетного класса на вторую стадию дробления руды, последующее обогащение промпродуктов по раздельным классам крупности, их классификацию и дезинтеграцию, аспирацию, двухстадиальную дезинтеграцию руды дроблением проводят в валково-зубчатых дробилках, после аспирации подрешетный продукт классификации дробленой руды направляют на обогащение, концентрат которого направляют на обогатительную фабрику, а хвосты в отвал, промпродукт среднего класса крупности направляют на обогащение, концентрат которого направляют на обогатительную фабрику, хвосты после классификации направляют на дезинтеграцию промпродукта с последующим направлением его после аспирации на обогащение, причем обогащение промпродукта среднего класса крупности проводят рентгенографической сепарацией, а обогащение подрешетного продукта классификации проводят полиэнергетической сепарацией. Полиэнергетическую сепарацию проводят по совокупности разделительных свойств полезного продукта, определяемых последовательным облучением несколькими видами излучения различных энергетических диапазонов, например, рентгеновским, ультрафиолетовым и инфракрасным излучениями при движении потока материала по конвейерной ленте.

Изобретение иллюстрируется фиг. 1, на которой представлена технологическая схема обогащения.

Способ осуществляется следующим образом. Исходная руда подвергается двухстадиальной дезинтеграции дроблением в валково-зубчатых дробилках и последующей классификации грохочением I стадии на три класса крупности. Надрешетный класс возвращается на II стадию дробления. Промпродукт среднего класса крупности направляют на рентгенографическую сепарацию, концентрат которой вывозят на обогатительную фабрику, а хвосты классифицируют на второй стадии грохочения, подрешетный продукт направляют в отвал, а надрешетный дезинтегрируют на III стадии дроблением, соединяя далее раздробленный материал с подрешетным продуктом I стадии грохочения. Объединенный промпродукт подвергают аспирации (классификации в воздушной среде), после чего подают на полиэнергетическую сепарацию, проводимую по совокупности разделительных свойств полезного продукта, определяемых последовательным облучением несколькими видами излучения различных энергетических диапазонов, например, рентгеновским, ультрафиолетовым и инфракрасным излучениями при движении потока материала по конвейерной ленте. Концентрат полиэнергетического сепаратора направляется в цех доводки ближайшей обогатительной фабрики, хвосты выводятся в отвал.

При практической реализации способа исходная руда крупностью не более 400 мм дробится до крупности 25 мм за две стадии дезинтеграции дроблением в валково-зубчатых дробилках (ВЗД) крупного и среднего дробления. Применение такого типа дробилок, где разрушение исходной руды происходит под воздействием зубьев, закрепленных на вращающихся валках, позволяет снизить конденсатообразование и увлажнение исходной руды за счет меньшей площади контакта дробящего элемента и материала. После рассева раздробленного материала на грохоте I стадии классификации по классам +20; -20+5 и -5 мм материал крупностью +20 мм (надрешетный продукт) возвращается на додрабливание в валково-зубчатую дробилку среднего дробления (II стадия дезинтеграции). Объем промпродукта, по опыту эксплуатации ВЗД, не превышает 2-3% от исходного, что также не способствует конденсатообразованию и увлажнению дробленого продукта за счет незначительных объемов циркуляции.

Таким образом, применение валково-зубчатых дробилок позволяет провести качественную подготовку материала к обогащению, что в свою очередь обеспечивает необходимые условия для применения новых более эффективных технологий обогащения алмазов.

Руда по классу -20+5 мм (промпродукт среднего класса крупности) обогащается рентгенографической сепарацией, концентрат которой перевозится в цех доводки обогатительной фабрики, а хвосты после II стадии классификации грохочением по зерну 10 мм додрабливаются в роторной дробилке III стадии дробления до крупности -5 мм. Операция дезинтеграции надрешетного продукта II стадии классификации проводится в один цикл, что также позволяет снизить вероятность увлажнения дробленого продукта. Хвосты рентгенографической сепарации крупностью -10 мм выводятся в отвал. Рентгенографическая сепарация позволяет с высокой степенью достоверности, избирательно извлекать все разновидности алмазов крупностью +5 мм, что позволяет получить более высокое сокращение исходного материала, более высокую кондицию концентрата и более высокое извлечение полезного продукта на этой операции.

Материал крупностью -5 мм I стадии грохочения (подрешетный продукт) и разгрузки III стадии дробления после удаления шлама крупностью -1,2 мм в КГК путем аспирации (классификации в воздушной среде) обогащается полиэнергетической сепарацией. Полиэнергетическая сепарация проводится при движении монослоя измельченного рудного материала по конвейеру с последовательно установленными над ним модулями регистрации алмазов, например, рентгенолюминесцентным (РЛ); рентгеноабсорбционным (РА); теплоабсобционным (ТА). Каждый из модулей использует различные признаки разделения с целью обнаружения алмазов. РЛ-модуль использует свойство алмазов люминесцировать в рентгеновском излучении; РА модуль обнаруживает их, анализируя степень поглощения рентгеновских лучей, что позволяет извлекать все типы алмазов, включая нелюминесцирующие кристаллы, а ТА-модуль регистрирует ценный компонент, используя более высокую теплопроводность алмазов по сравнению с вмещающими породами. Блоки управления модулей связаны между собой, а также с центральным блоком управления, образуя единый комплекс полиэнергетической сепарации, позволяющий за счет обмена данными о расположении алмазов на ленте транспортера выполнить условно-контрольные и условно-перечистные операции. Реализация условно-контрольных операций позволяет получить более высокое извлечение ценного компонента, а достоверность его определения достигается за счет выполнения условно-перечистных операций. Таким образом, полиэнергетическая сепарация по сравнению с традиционной моноэнергетической позволяет значительно снизить объем получаемого концентрата, поступающего на дополнительное обогащение, с более высокой кондицией и высоким извлечением полезного продукта.

Концентрат полиэнергетической сепарации направляется в цех доводки ближайшей обогатительной фабрики, хвосты выводятся в отвал.

Осуществление заявляемого способа сухой концентрации алмазосодержащей руды позволит повысить эффективность обогащения алмазосодержащих руд.

Похожие патенты RU2681798C1

название год авторы номер документа
СПОСОБ СУХОЙ КОНЦЕНТРАЦИИ РУДЫ 2007
  • Дюкарев Владимир Петрович
  • Махрачев Александр Федорович
  • Ганченко Михаил Васильевич
  • Ларионов Николай Петрович
  • Савицкий Валерий Борисович
  • Кантемиров Виктор Михайлович
  • Амелин Сергей Анатольевич
  • Муфарахов Назир Мансурович
  • Лазутин Эдуард Степанович
RU2356650C2
КОМПЛЕКС СУХОЙ КОНЦЕНТРАЦИИ АЛМАЗОСОДЕРЖАЩЕЙ КИМБЕРЛИТОВОЙ РУДЫ 2003
  • Дюкарев В.П.
  • Калитин В.Т.
  • Морозкин А.П.
  • Махрачев А.Ф.
  • Шулояков А.Д.
  • Вайсберг Л.А.
  • Черкасский В.А.
  • Ведин А.Т.
  • Амелин С.А.
  • Кантемиров В.М.
  • Лазутин Э.С.
  • Ларионов Н.П.
  • Савицкий В.Б.
RU2247607C2
СПОСОБ ИЗВЛЕЧЕНИЯ АЛМАЗОВ ИЗ АЛМАЗОСОДЕРЖАЩЕГО СЫРЬЯ 1996
  • Нем Виталий Васильевич
  • Смольников Виктор Александрович
  • Кочнев Владимир Георгиевич
  • Зуев Владимир Миронович
RU2094126C1
СПОСОБ ПЕРЕРАБОТКИ ГЛИНИСТЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД 1996
  • Щербаков В.И.
  • Першина Л.И.
  • Дудник В.А.
  • Лопатюк В.А.
RU2122471C1
СПОСОБ ИЗВЛЕЧЕНИЯ ИЗ РУД АЛМАЗОВ 2006
  • Злобин Михаил Николаевич
  • Новиков Владлен Васильевич
  • Козеев Анатолий Александрович
RU2320420C1
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩИХ РУД 2006
  • Злобин Михаил Николаевич
  • Новиков Владлен Васильевич
  • Рудаков Валерий Владимирович
  • Совмен Владимир Кушукович
  • Зельберг Семен Ильич
  • Казимиров Михаил Павлович
  • Компанейцев Евгений Анатольевич
RU2320421C1
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩИХ РУД 2007
  • Злобин Михаил Николаевич
  • Новиков Владлен Васильевич
  • Рудаков Валерий Владимирович
  • Совмен Владимир Кушукович
  • Зельберг Семен Ильич
  • Казимиров Михаил Павлович
  • Компанейцев Евгений Анатольевич
RU2336950C1
СПОСОБ ДОВОДКИ КОНЦЕНТРАТОВ ДРАГОЦЕННЫХ МЕТАЛЛОВ 2020
  • Дрожжин Владимир Александрович
  • Щежин Валерий Алексеевич
RU2750896C1
СПОСОБ ОБОГАЩЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ 2007
  • Злобин Михаил Николаевич
  • Злобин Евгений Михайлович
RU2329869C1
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩИХ РУД 2006
  • Злобин Михаил Николаевич
  • Новиков Владлен Васильевич
  • Рудаков Валерий Владимирович
  • Совмен Владимир Кушукович
  • Зельберг Семен Ильич
  • Казимиров Михаил Павлович
  • Компанейцев Евгений Анатольевич
RU2313398C1

Иллюстрации к изобретению RU 2 681 798 C1

Реферат патента 2019 года СПОСОБ СУХОЙ КОНЦЕНТРАЦИИ АЛМАЗОСОДЕРЖАЩЕЙ РУДЫ

Предложенное изобретение относится к области добычи полезных ископаемых, а именно к первичной переработке сухого алмазосодержащего сырья непосредственно на месторождении. Способ сухой концентрации алмазосодержащей руды включает двухстадиальную дезинтеграцию исходной руды дроблением, классификацию дробленой руды с направлением надрешетного класса на вторую стадию дробления руды, последующее обогащение промпродуктов по раздельным классам крупности, их классификацию и дезинтеграцию, аспирацию. Двухстадиальную дезинтеграцию руды дроблением проводят в валково-зубчатых дробилках. После аспирации подрешетный продукт классификации дробленой руды направляют на обогащение, концентрат которого направляют на обогатительную фабрику, а хвосты в отвал. Промпродукт среднего класса крупности направляют на обогащение, концентрат которого направляют на обогатительную фабрику. Хвосты после классификации направляют на дезинтеграцию промпродукта с последующим направлением его после аспирации на обогащение. Обогащение промпродукта среднего класса крупности проводят рентгенографической сепарацией, а обогащение подрешетного продукта классификации проводят полиэнергетической сепарацией. Полиэнергетическую сепарацию проводят по совокупности разделительных свойств полезного продукта, определяемых последовательным облучением несколькими видами излучения различных энергетических диапазонов, например рентгеновским, ультрафиолетовым и инфракрасным излучениями, при движении потока материала по конвейерной ленте. Технический результат – повышение извлечения алмазов. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 681 798 C1

1. Способ сухой концентрации алмазосодержащей руды, включающий двухстадиальную дезинтеграцию исходной руды дроблением, классификацию дробленой руды с направлением надрешетного класса на вторую стадию дробления руды, последующее обогащение промпродуктов по раздельным классам крупности, их классификацию и дезинтеграцию, аспирацию, отличающийся тем, что двухстадиальную дезинтеграцию руды дроблением проводят в валково-зубчатых дробилках, после аспирации подрешетный продукт классификации дробленой руды направляют на обогащение, концентрат которого направляют на обогатительную фабрику, а хвосты в отвал, промпродукт среднего класса крупности направляют на обогащение, концентрат которого направляют на обогатительную фабрику, хвосты после классификации направляют на дезинтеграцию промпродукта с последующим направлением его после аспирации на обогащение, причем обогащение промпродукта среднего класса крупности проводят рентгенографической сепарацией, а обогащение подрешетного продукта классификации проводят полиэнергетической сепарацией.

2. Способ по п. 1, отличающийся тем, что полиэнергетическую сепарацию проводят по совокупности разделительных свойств полезного продукта, определяемых последовательным облучением несколькими видами излучения различных энергетических диапазонов, например рентгеновским, ультрафиолетовым и инфракрасным излучениями, при движении потока материала по конвейерной ленте.

Документы, цитированные в отчете о поиске Патент 2019 года RU2681798C1

СПОСОБ СУХОЙ КОНЦЕНТРАЦИИ РУДЫ 2007
  • Дюкарев Владимир Петрович
  • Махрачев Александр Федорович
  • Ганченко Михаил Васильевич
  • Ларионов Николай Петрович
  • Савицкий Валерий Борисович
  • Кантемиров Виктор Михайлович
  • Амелин Сергей Анатольевич
  • Муфарахов Назир Мансурович
  • Лазутин Эдуард Степанович
RU2356650C2
КОМПЛЕКС СУХОЙ КОНЦЕНТРАЦИИ АЛМАЗОСОДЕРЖАЩЕЙ КИМБЕРЛИТОВОЙ РУДЫ 2003
  • Дюкарев В.П.
  • Калитин В.Т.
  • Морозкин А.П.
  • Махрачев А.Ф.
  • Шулояков А.Д.
  • Вайсберг Л.А.
  • Черкасский В.А.
  • Ведин А.Т.
  • Амелин С.А.
  • Кантемиров В.М.
  • Лазутин Э.С.
  • Ларионов Н.П.
  • Савицкий В.Б.
RU2247607C2
СПОСОБ ИДЕНТИФИКАЦИИ КРИСТАЛЛОВ АЛМАЗОВ 2007
  • Годун Константин Викторович
  • Кудря Владимир Викторович
  • Ольховский Александр Михайлович
  • Рассулов Виктор Асафович
RU2329489C1
Динамометрическая шпала 1955
  • Кислик Д.А.
SU109364A1
СПОСОБ СЕПАРАЦИИ ЧАСТИЦ ПОЛЕЗНОГО МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Лукьянченко Евгений Матвеевич
  • Захаров Владимир Гаврилович
RU2517148C1
Буровая коронка 1934
  • Курьянов Г.Н.
SU40919A1
DE 3432916 A1, 20.03.1986.

RU 2 681 798 C1

Авторы

Иванов Андрей Витальевич

Имангулов Сергей Вениаминович

Попадьин Евгений Геннадьевич

Яковлев Виктор Николаевич

Даты

2019-03-12Публикация

2018-04-09Подача