Высокочувствительный ионизационный вакуумметрический преобразователь Российский патент 2019 года по МПК G01L21/30 

Описание патента на изобретение RU2682067C2

Высокочувствительный ионизационный вакуумметрический преобразователь

Изобретение относится к технике измерения высокого вакуума и может быть использовано при создании вакуумметров с пределами измерения от 1 Па до 10-10 Па.

Для измерения высокого вакуума используются ионизационные преобразователи трех основных видов: с накаливаемым катодом, с холодным катодом и преобразователи с радиоактивной ионизацией.

Из преобразователей с накаливаемым катодом наиболее широкое распространение получили преобразователи Байярда-Альперта [Пипко А.И., Плисковский В.Я., Пенчко Е.А. Конструирование и расчет вакуумных систем. - М.: Энергия, 1979], имеющие инверсную конструкцию электродной системы (с наружным расположением катода). Достоинствами преобразователей с накаливаемым катодом являются невысокое анодное напряжение (300-500 В), легкое зажигание электрического разряда (поскольку в данном случае он не является самостоятельным) и сравнительно широкий диапазон измеряемых давлений (1…10-8 Па). Основными недостатками являются опасность выхода из строя при прорыве вакуумной системы (перегорание катода), ограниченный срок службы (из-за потери эмиссии катода) и необходимость стабилизации тока эмиссии катода.

Из преобразователей с холодным катодом наиболее совершенными являются магнитные электроразрядные вакуумметрические преобразователи [Гейнце В. Введение в вакуумную технику. - М.: Госэнергоиздат, 1960]. Они основаны на использовании ионизации остаточного газа в межэлектродном пространстве преобразователя в скрещенных (радиальном) электрическом и (осевом) магнитном полях. Напряженность электрического поля должно выбираться так, чтобы энергия электронов была достаточной для эффективной ионизации нейтральных молекул газа. Роль магнитного поля заключается в увеличении длины траекторий электронов за счет их петлеобразного движения вдоль силовых линий магнитного поля. Это приводит к существенному повышения вероятности ионизации нейтральных молекул разряженного газа. При этом возникает проблема определения оптимальных соотношений между геометрическими параметрами преобразователя, напряжением на электродах и величиной магнитной индукции в ионизационной области, которая до настоящего времени не решена и является предметом данного изобретениия. Выбор оптимальных параметров позволяет получать приемлемую чувствительность преобразователя при сравнительно малых токах электронной эмиссии (в данных преобразователях электронная эмиссия возникает с поверхности холодного катода при его бомбардировке ионами).

В настоящее время известно несколько конструкций магнитных электроразрядных преобразователей. Наиболее широко применяется инверсно-магнетронная конструкция таких преобразователей. В частности, в нашей стране наиболее широкое применение получили инверсно-магнетронные преобразователи отечественной разработки типов ПММ-32-1, ПММ-14М и ПММ-46. Среди них наиболее простую и технологичную конструкцию имеет преобразователь ПММ-32-1 [Преобразователь манометрический магниторазрядный ПММ-32-1. Паспорт] (прототип). Он обеспечивает пределы измерения от 1 Па до 10-7 Па. Главная конструктивная особенность этого преобразователя, обеспечивающая его конструктивную простоту, состоит в том, что создающий постоянное магнитное поле постоянный магнит, выполненный в виде продольно намагниченного полого цилиндра, одновременно является катодом электродной системы.

Основными недостатками этого преобразователя являются трудность зажигания и нестабильность самостоятельного электрического разряда на нижних пределах измерения (10-6-10-7 Па) и ограничение нижнего предела измерения величиной 10-7 Па из-за малого значения ионного тока и влияния тока автоэлектронной эмиссии, которая возникает в местах наиболее сильного электрического поля между боковыми внутренними поверхностями полюсных накладок и анодом, а также токов утечки выводов. Ток автоэлектронной эмиссии не зависит от давления, т.к. в зонах его возникновения магнитное поле практически отсутствует, а расстояние до анода очень мало (в преобразователе ПММ-32-1 оно составляет всего 3,5 мм), что на несколько порядков меньше длины свободного пробега электронов на нижних пределах измерения. Поэтому электроны, эмитированные из полюсных накладок, беспрепятственно попадают на анод, не произведя ни одного столкновения с нейтральными частицами газа. А поскольку полюсные накладки электрически соединены с катодом (постоянным магнитом, выполняющим функцию коллектора ионов), то электронный ток автоэлектронной эмиссии невозможно отделить от полезного ионного тока, измеряемого в цепи катода. Следовательно, ток автоэлектронной эмиссии в данном случае играет вредную роль, уменьшая чувствительность преобразователя на нижних пределах измерения. В то же время известен вакуумметр [Электронный ионизационный преобразователь давления. А.с. СССР № SU 1462130 / И.А. Донской, И.Л. Коган, Е.А. Пенчко, Т.Л. Шарапова, Ю.Б. Янкелевич. Опубл. 28.02.89, Бюл. №8], в котором явление автоэлектронной эмиссии играет полезную роль, являясь основным источником свободных электронов в межэлектродное пространство. По принципу действия он близок к преобразователю Пеннинга [Ворончев Т.А., Соболев В.Д. Физические основы электровакуумной техники. - М.: Высшая школа, 1967], но вместо накаливаемого катода в нем используется тонкопленочный холодный катод, работающий на принципе автоэлектронной эмиссии с системой фокусировки электронного пучка.

Технической задачей, на решение которой направлено предлагаемое изобретение, является расширение предела измерения в сторону малых давлений, облегчение зажигания разряда, повышение величины ионного тока и повышение точности измерений на этих пределах измерения, а также увеличения количества зарядов в тлеющем разряде. Эта задача решается путем установления на концах анода преобразователя двух керамических отражателей. Наличие керамических отражателей повышает количество зарядов в тлеющем разряде, а следовательно и разрядный ток, что приводит к повышению чувствительности прибора.

Конструкция высокочувствительного ионизационного вакуумметрического преобразователя (далее преобразователь) представлена на фиг. 1, на которой указан штыревой анод 1, полый цилиндрический холодный катод 3, одновременно являющийся постоянным магнитом, намагниченным в осевом направлении, и конические полюсные накладки 4 и 5, центрирующую шайбу 13, к которой крепится электродная система преобразователя. Цилиндрический холодный катод 3 выполнен в виде двух намагниченных вдоль оси постоянных цилиндрических магнита с кольцевыми электродами 2. Верхняя и нижняя конические полюсные накладки 4 и 5, служащие для создания необходимой конфигурации магнитного поля в межэлектродном пространстве и электрически соединены с корпусом и изолированны диэлектрическими прокладками 6 и 7 от постоянных магнитов. Дополнительные электроды 9 и 11, в виде концентрических тонких колец, изолированных друг от друга и постоянных магнитов диэлектрическими прокладками 8, 10 и 12, и соединены электрическими выводами, проходящими через стеклянные или керамические изоляторы корпуса. В верхней и нижней частях анода преобразователя находятся две отражающие керамические шайбы 15. Центрирующая шайба 13 является частью корпуса, в котором располагается и крепится вся конструкция преобразователя.

Численные расчеты, а также экспериментальные наблюдения и измерения позволяют сформулировать принцип работы преобразователя следующим образом. Во-первых, в рабочей зоне датчика магнитное поле продольное и близко к однородному, а электрическое поле можно аппроксимировать электрическим полем цилиндрического конденсатора (фиг. 2). Поэтому численные расчеты в первом приближении можно проводить в модели плоской задачи.

На пределах измерения от 1 Па до 10-5 Па включительно на дополнительные электроды 9 и 11 напряжение не подается, и преобразователь работает как обычный инверсно-магнетронный вакуумметрический преобразователь. Между холодным катодом 3 и анодом 1 приложено постоянное напряжение величиной порядка 2500 В. Оно создает в межэлектродном пространстве радиально направленное электрическое поле, под действием которого свободные электроны, имеющиеся в межэлектродном пространстве, разгоняются в направлении анода. Однако перпендикулярно электрическому полю действует магнитное поле постоянного магнита (который одновременно является холодным катодом 3), формируемое с помощью полюсных накладок 4 и 5. Активной зоной преобразователя, в которой происходит ионизация нейтральных частиц газа, является пространство между полюсными накладками 4 и 5, простирающееся до внутренней поверхности холодного катода 3. Под действием магнитного поля заряженные частицы (электроны и ионы) отклоняются в тангенциальном направлении. Напряженности электрического и магнитного полей подобраны таким образом, чтобы электроны совершали циклоидальное вращение с радиусом меньшим поперечных размеров активной зоны преобразователя (фиг. 3). Такие траектории называются гипоциклоидами. Двигаясь по гипоциклоидам, электроны могут покинуть активную зону преобразователя, во-первых, из-за столкновений с нейтральными частицами газа, во-вторых, через верхнюю отрытую часть преобразователя (фиг. 4. б). Движение по гипоциклоидам увеличивает вероятность ионизанионных столкновений электронов с нейтральными частицами. Результаты экспериментальных наблюдений и численных расчетов показали, что ионизационные процессы происходят в окрестности центрального электрода (анода) - см. физ. 3. Электроны, разгоняясь в электрическом поле, набирают значительную энергию и, бомбардируя поверхность катода, выбивают из него вторичные электроны, которые, попадая в активную зону преобразователя и сталкиваясь с нейтральными частицами газа, ионизируют их и, тем самым, поддерживают электрический разряд. Условие того, что вторичные электроны будут оставаться и ионизационной зоне, имеет вид

где т, е - масса и заряд зарядов, U - напряжение на электродах, В - магнитная индукция, R1, R2 - радиусы центрального (анода) и внешнего (катода)электродов.

Формула (1) является оценочной для определения оптимальных параметров преобразователя.

Численные и экспериментальные исследования (фиг. 4) показали, что электроны могут покидать ионизационную зону 14, только двигаясь вдоль силовых линий магнитного поля, полому для возвращения их в ионизационную зону преобразователь дополнен керамическими отражателями 15. Результаты расчетов ионизационного тока в рамках механики сплошных сред для давлений 10-1 Па ≤ p ≤ 10-3 Па дают следующее выражение для ионизационного тока

где А - константа, зависящая только от геометрических размеров преобразователя.

Экспериментальные измерения показывают удовлетворительное соответствие с теоретической формулой (2) - см. фиг. 5.

При давлениях от 10-6 Па и ниже ионный ток становится очень малым (менее 1 нА) и становится сравнимым с токами утечки выводов и возможными токами автоэлектронной эмиссии с тех поверхностей полюсных накладок, которые расположены ближе всего к аноду, а значит, электрическое поле в этих областях будет максимальным. Это и ограничивает нижний предел измерения, а также затрудняет зажигание разряда при отсутствии вспомогательного источника свободных электронов. Поэтому на пределах измерения 10-6 Па и ниже на дополнительные электроды 9 и 11 подается ступенчато регулируемое (при переключениях пределов измерения) напряжение, создающее между кольцевыми поверхностями электродов 9 и 11 сильное электрическое поле, достаточное для возникновения автоэлектронной эмиссии из металла электродов. В диапазоне давлений до 10-10 Па токи тлеющего разряда чрезвычайно малы (наноамперы). Этому способствует уход зарядов через верхнюю и нижнюю части преобразователя. Поэтому возникает необходимость в установлении на концах анода отражателей. Выбор керамического материала отражателей обусловлен тем, что керамика не искажает магнитное поле и имеет высокое значение работы выхода электронов, что приводит к незначительным значениям токов вторичной эмиссии.

Таким образом, введение дополнительных электродов 9 и 11 при измерении малых давлений с подаваемым на них регулируемым напряжением, а также установление двух отражательных керамических шайб позволяет повысить точность измерения в диапазоне низкою давления (до 10-10 Па).

Литература

1. Пипко А.И., Плисковский В.Я., Пенчко Е.А. Конструирование и расчет вакуумных систем. - М.: Энергия, 1979. - 504 с.

2. Гейнце В. Введение в вакуумную технику. - М.: Госэнергоиздат, 1960. - 512 с.

3. Ворончев Т.А., Соболев В.Д. Физические основы электровакуумной техники. - М.: Высшая школа, 1967. - 352 с.

4. Уэстон Дж. Техника сверхвысокого вакуума: Пер. с англ. - М.: Мир, 1988. - 366 с.

5. Преобразователь манометрический магниторазрядный ПММ-32-1. Паспорт.

6. Электронный ионизационный преобразователь давления. А.с. СССР № SU 1462130 / И.А. Донской, И.Л. Коган, Е.А. Пенчко, Т.Л. Шарапова, Ю.Б. Янкелевич. Опубл. 28.02.89, Бюл. №8.

Похожие патенты RU2682067C2

название год авторы номер документа
ВЫСОКОЧУВСТВИТЕЛЬНЫЙ ИОНИЗАЦИОННЫЙ ВАКУУММЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2012
  • Богомазов Руслан Юрьевич
  • Дрейзин Валерий Элзарович
  • Кочура Алексей Вячеславович
  • Пиккиев Валерьян Алексеевич
RU2515212C2
КОМБИНИРОВАННЫЙ ИОНИЗАЦИОННЫЙ ВАКУУММЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2008
  • Дрейзин Валерий Элезарович
  • Овсянников Юрий Александрович
  • Поляков Валентин Геннадьевич
  • Поветкин Роман Алексеевич
  • Бабаскин Станислав Олегович
RU2389990C2
Разборный инверсно-магнетронный вакуумметрический преобразователь с дополнительным углеродным автоэлектронным эмиттером, защищенным от ионной бомбардировки 2015
  • Ратушный Дмитрий Валерьевич
  • Розанов Леонид Николаевич
  • Белов Максим Николаевич
  • Гапонов Владимир Алексеевич
RU2610214C1
ИОНИЗАЦИОННЫЙ МАНОМЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2016
  • Базылев Виктор Кузьмич
  • Коротченко Владимир Александрович
  • Жидков Александр Михайлович
  • Скворцов Вадим Эвальдович
RU2656091C1
Ионизационный преобразователь 2023
  • Удовиченко Кирилл Николаевич
  • Глазунов Георгий Валерьевич
  • Ханбеков Иван Фэритович
  • Копылов Алексей Андреевич
  • Иваникин Игорь Анатольевич
  • Копытов Дмитрий Вячеславович
RU2812117C1
ПЛАЗМЕННЫЙ ИСТОЧНИК ЭЛЕКТРОНОВ НА ОСНОВЕ ПЕННИНГОВСКОГО РАЗРЯДА С РАДИАЛЬНО СХОДЯЩИМСЯ ЛЕНТОЧНЫМ ПУЧКОМ 2003
  • Нархинов В.П.
RU2256979C1
ШИРОКОДИАПАЗОННЫЙ МАНОМЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2021
  • Базылев Виктор Кузьмич
  • Коротченко Владимир Александрович
  • Жидков Александр Михайлович
RU2771640C1
Магниторазрядный манометр 1976
  • Пенчко Евгений Ануфриевич
  • Фурсов Александр Иванович
  • Ханина Ирина Федоровна
SU575522A1
Электровакуумный прибор со скрещенными электрическим и магнитным полями 1981
  • Зильберман Марк Маркович
  • Писаренко Леонид Дмитриевич
SU978231A1
СПОСОБ ИЗГОТОВЛЕНИЯ СЧЕТЧИКА ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ 2020
  • Митрофанов Евгений Аркадьевич
  • Симакин Сергей Борисович
  • Шабалкин Алексей Вячеславович
RU2765146C1

Иллюстрации к изобретению RU 2 682 067 C2

Реферат патента 2019 года Высокочувствительный ионизационный вакуумметрический преобразователь

Изобретение относится к технике измерения высокого вакуума. Высокочувствительный ионизационный вакуумметрический преобразователь содержит концентрически расположенные штыревой анод, полый цилиндрический холодный катод, одновременно являющийся постоянным магнитом, намагниченным в осевом направлении, и конические полюсные накладки, формирующие в активной зоне преобразователя поперечное электрическому магнитное поле, центрирующую шайбу, к которой крепится электродная система преобразователя, при этом в преобразователь введены дополнительные керамические отражатели в виде дисков, расположенных на концах оси анода, которые усиливают ионизационные процессы, что обеспечивает повышение чувствительности и точности преобразователя. 5 ил.

Формула изобретения RU 2 682 067 C2

Высокочувствительный ионизационный вакуумметрический преобразователь, содержащий концентрически расположенные штыревой анод, полый цилиндрический холодный катод, одновременно являющийся постоянным магнитом, намагниченным в осевом направлении, и конические полюсные накладки, формирующие в активной зоне преобразователя поперечное электрическому магнитное поле, центрирующую шайбу, к которой крепится электродная система преобразователя, отличающийся тем, что в преобразователь введены дополнительные керамические отражатели в виде дисков, расположенных на концах оси анода, которые усиливают ионизационные процессы, что обеспечивает повышение чувствительности и точности преобразователя.

Документы, цитированные в отчете о поиске Патент 2019 года RU2682067C2

ВЫСОКОЧУВСТВИТЕЛЬНЫЙ ИОНИЗАЦИОННЫЙ ВАКУУММЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2012
  • Богомазов Руслан Юрьевич
  • Дрейзин Валерий Элзарович
  • Кочура Алексей Вячеславович
  • Пиккиев Валерьян Алексеевич
RU2515212C2
US 5317270 A1, 31.05.1994
КОМБИНИРОВАННЫЙ ИОНИЗАЦИОННЫЙ ВАКУУММЕТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2008
  • Дрейзин Валерий Элезарович
  • Овсянников Юрий Александрович
  • Поляков Валентин Геннадьевич
  • Поветкин Роман Алексеевич
  • Бабаскин Станислав Олегович
RU2389990C2
Разборный инверсно-магнетронный вакуумметрический преобразователь с дополнительным углеродным автоэлектронным эмиттером, защищенным от ионной бомбардировки 2015
  • Ратушный Дмитрий Валерьевич
  • Розанов Леонид Николаевич
  • Белов Максим Николаевич
  • Гапонов Владимир Алексеевич
RU2610214C1

RU 2 682 067 C2

Авторы

Жакин Анатолий Иванович

Пиккиев Валерьян Алексеевич

Гримов Александр Александрович

Луценко Антон Андреевич

Харламов Сергей Александрович

Даты

2019-03-14Публикация

2017-03-29Подача