СПОСОБ УВЕЛИЧЕНИЯ ГАЗОПРОНИЦАЕМОСТИ ДЛЯ СКВАЖИН МЕТАНА УГОЛЬНЫХ ПЛАСТОВ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ РАЗРЫВА ПРИ ПОМОЩИ ВЗРЫВА ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКИХ ИМПУЛЬСОВ Российский патент 2019 года по МПК E21B43/26 E21F7/00 

Описание патента на изобретение RU2683438C1

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу увеличения газопроницаемости с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов и, в частности, к способу увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов, который применим для высокоэффективной эксплуатации метана угольных пластов.

Описание предшествующего уровня техники

Метан угольных пластов представляет собой вид чистой энергии. Запасы геологических ресурсов метана угольных пластов, залегающего под землей в Китае менее чем на 2000 м, занимают третье место в мире и имеют большой потенциал для эксплуатации. Однако геологические условия для добычи метана угольных пластов сложны в Китае, и эксплуатация метана угольного пласта, как правило, сталкивается с проблемами высокой стоимости и низкой эффективности. Для увеличения выхода метана угольных пластов в реконструкции скважин метана угольных пластов для увеличения выхода применяются такие меры, как смещение путем введения газа, гидроразрыв и горизонтальная скважина с несколькими ветками, при этом гидроразрыв является наиболее часто используемым техническим средством в существующей эксплуатации метана угольных пластов. Однако традиционная технология гидроразрыва обеспечивает небольшое количество трещин в угольном пласте, и эти трещины распространяются в небольшом диапазоне. Следовательно, общий эффект разрыва не является желательным, что в результате приводит к низкому выходу метана угольных пластов на скважину.

В последние десятилетия быстро развиваются технологии мощных электрических импульсов, а в Китае проводятся некоторые исследования по способам увеличения газопроницаемости резервуаров с использованием технологий мощных электрических импульсов. Например, в патентной публикации № CN 104832149A с названием «Unconventional Permeability Enhancement Method for Natural Gas Reservoirs by Using Electric Pulse Assisted Hydrofracturing» воду с определенным давлением вводят в просверленное отверстие, а газопроницаемость резервуара увеличивается за счет использования кавитационного эффекта и ударных волн воды, возникающих в результате разряда разрядного устройства в воде. Однако перемещаясь в форме сферических волн, ударные волны, возникающие в результате разряда в воде, быстро затухают при перемещении. Следовательно, способ имеет ограниченный эффективный ударный диапазон и низкую эффективность. В патентной публикации № CN105370257A с названием «Method for Increasing Yield of Coalbed Methane Wells by Using High-Power Electric Detonation Assisted Hydrofracturing» гидроразрыв и использование высоковольтных электрических импульсов в сущности объединены, а ударные волны, образованные разрядом устройства для создания высоковольтных электрических импульсов в жидкости для гидроразрыва пласта, используются для эффективного увеличения количества трещин в угольном пласте. Однако проблемой данного способа является то, что эффективный ударный диапазон относительно небольшой, так как ударные волны, образованные разрядом в ​воде, перемещаются в виде сферических волн.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Техническая задача: целью настоящего изобретения является решение задач предшествующего уровня техники и обеспечение способа увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов, в котором большое количество энергии, создаваемой разрядом высоковольтного электрического импульса, непосредственно воздействует на угольный резервуар с образованием плазменного канала в угольном пласте между положительным электродом и отрицательным электродом; большое количество энергии мгновенно проходит через плазменный канал, и создаваемые усилие высокотемпературного теплового расширения и ударные волны воздействуют на угольный пласт с образованием большого количества трещин в угольном пласте и обеспечением распространения уже существующих трещин. Следовательно, способ может эффективно увеличивать количество трещин и трещины могут распространяться в длину в угольном пласте, он создает благоприятные условия для течения метана угольных пластов и имеет хорошие перспективы применения в увеличении выхода из скважин метана угольных пластов.

Техническое решение: способ увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов согласно настоящему изобретению включает следующие этапы:

a. построение ствола скважины метана угольных пластов с положительным электродом и ствола скважины метана угольных пластов с отрицательным электродом от поверхности земли до угольного пласта, размещение при помощи буровой вышки зафиксированной платформы, установленной с положительным электродом и устройством для создания высоковольтных импульсов, расположенным на зафиксированной платформе, по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта в стволе скважины метана угольных пластов с положительным электродом и размещение при помощи буровой вышки другой зафиксированной платформы, установленной с отрицательным электродом, по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта в стволе скважины метана угольных пластов с отрицательным электродом, при этом отрицательный электрод соединен с положительным электродом через кабель;

b. регулировка при помощи консоли зафиксированных платформ в стволе скважины метана угольных пластов с положительным электродом и в стволе скважины метана угольных пластов с отрицательным электродом, так что верхние части зафиксированных платформ находятся в тесном контакте со стенками ствола скважины, положительный электрод и отрицательный электрод на двух зафиксированных платформах также находятся в тесном контакте со стенками ствола скважины, соответственно, и положительный электрод и отрицательный электрод расположены напротив друг друга на одном и том же уровне;

c. включение переключателя высоковольтных электрических импульсов для зарядки устройства для создания высоковольтных импульсов через кабель, при этом при достижении установленного напряжения разряда устройство для создания высоковольтных импульсов подает электричество на угольный пласт между положительным электродом и отрицательным электродом через положительный электрод, и выключение переключателя высоковольтных электрических импульсов после 10–100 разрядов;

d. удаление зафиксированной платформы, установленной с положительным электродом и устройством для создания высоковольтных импульсов, из ствола скважины метана угольных пластов с положительным электродом, удаление другой зафиксированной платформы, установленной с отрицательным электродом, из ствола скважины метана угольных пластов с отрицательным электродом и запуск извлечения метана угольных пластов согласно традиционным технологиям.

Частота разряда устройства для создания высоковольтных импульсов составляет 5–30 Гц, а диапазон напряжения находится в пределах 500–9000 кВ.

Расстояние между стволом скважины метана угольных пластов с положительным электродом и стволом скважины метана угольных пластов с отрицательным электродом составляет 150–1200 м.

Устройство для создания высоковольтных импульсов содержит конденсатор и пусковой механизм импульса, соединенный с конденсатором.

Преимущественные эффекты. Согласно настоящему изобретению угольный пласт между положительным электродом и отрицательным электродом разрушается под воздействием большого количества энергии, создаваемой мощным электрическим импульсом. Большое количество энергии мгновенно проходит через плазменный канал, образованный в угольном пласте, и полученное усилие высокотемпературного теплового расширения и ударные волны воздействуют на остов угля вокруг стенки плазменного канала с образованием большого количества трещин в угольном пласте и обеспечением распространения ранее существующих трещин. Следовательно, количество трещин в угольном пласте и длина распространения трещин могут быть эффективно увеличены, а коэффициент газопроницаемости остова угля может быть улучшен в 150–350 раз. Способ характеризуется простым процессом строительства, прост в эксплуатации, безопасен и надежен. Он может эффективно увеличить выход метана угольных пластов на скважину и широко применим в данной области техники.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На фиг. 1 представлена структурная схема системы для увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов согласно настоящему изобретению; и

на фиг. 2 представлена принципиальная схема устройства для создания высоковольтных электрических импульсов.

На чертеже: 1: угольный пласт, 2: ствол скважины метана угольных пластов с положительным электродом, 3: ствол скважины метана угольных пластов с отрицательным электродом, 4: зафиксированная платформа, 5: положительный электрод, 6: отрицательный электрод, 7: устройство для создания высоковольтных импульсов, 8: консоль, 9: переключатель высоковольтных электрических импульсов, 10: кабель, 11: буровая вышка, 12: кабель, 13: конденсатор, 14: пусковой механизм импульса.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Вариант осуществления настоящего изобретения дополнительно описан ниже со ссылкой на прилагаемые чертежи.

Как показано на фиг. 1 и на фиг. 2, способ увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов согласно настоящему изобретению включает следующие конкретные этапы:

(1) построение ствола 2 скважины метана угольных пластов с положительным электродом и ствола 3 скважины метана угольных пластов с отрицательным электродом от поверхности земли до угольного пласта 1, при этом расстояние между стволом 2 скважины метана угольных пластов с положительным электродом и стволом 3 скважины метана угольных пластов с отрицательным электродом составляет 150–1200 м, размещение при помощи буровой вышки 11 зафиксированной платформы 4, установленной с положительным электродом 5 и устройством 7 для создания высоковольтных импульсов, расположенным на зафиксированной платформе 4, по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта 1 в стволе 2 скважины метана угольных пластов с положительным электродом, при этом устройство 7 для создания высоковольтных импульсов содержит конденсатор 13 и генератор 14 импульсов, соединенный с конденсатором 13, и размещение при помощи буровой вышки 11 другой зафиксированной платформы 4, установленной с отрицательным электродом 6, по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта 1 в стволе 3 скважины метана угольных пластов с отрицательным электродом, при этом отрицательный электрод 6 соединен с конденсатором 13 устройства 7 для создания высоковольтных импульсов в стволе 2 скважины метана угольных пластов с положительным электродом через кабель 12;

(2) регулировка при помощи консоли 8 зафиксированных платформ 4 в стволе 2 скважины метана угольных пластов с положительным электродом и в стволе 3 скважины метана угольных пластов с отрицательным электродом, так что верхние части зафиксированных платформ 4 находятся в тесном контакте со стенками ствола скважины, положительный электрод 5 на зафиксированной платформе 4 в стволе 2 скважины метана угольных пластов с положительным электродом и отрицательный электрод 6 на зафиксированной платформе 4 в стволе 3 скважины метана угольных пластов с отрицательным электродом также находятся в тесном контакте со стенками ствола скважины, соответственно, и положительный электрод 5 и отрицательный электрод 6 расположены напротив друг друга на одном и том же уровне;

(3) включение переключателя 9 высоковольтных электрических импульсов для зарядки устройства 7 для создания высоковольтных импульсов через кабель 10, при этом при достижении установленного напряжения разряда устройство 7 для создания высоковольтных импульсов подает электричество на угольный пласт между положительным электродом 5 и отрицательным электродом 6 через положительный электрод 5, и выключение переключателя 9 высоковольтных электрических импульсов после 10–100 разрядов, при этом частота разряда устройства 7 для создания высоковольтных импульсов составляет 5–30 Гц, а диапазон напряжения находится в пределах 500–9000 кВ, например, переключатель 9 высоковольтных электрических импульсов выключается после осуществления разряда на угольном пласте между положительным электродом 5 и отрицательным электродом 6 при частоте 5 Гц в течение 15 раз; и

(4) удаление зафиксированной платформы 4, установленной с положительным электродом 5 и устройством 7 для создания высоковольтных импульсов в стволе 2 скважины метана угольных пластов с положительным электродом, из ствола 2 скважины метана угольных пластов с положительным электродом, удаление другой зафиксированной платформы 4, установленной с отрицательным электродом 6 в стволе 3 скважины метана угольных пластов с отрицательным электродом, из ствола 3 скважины метана угольных пластов с отрицательным электродом и запуск извлечения метана угольных пластов в стволе 2 скважины метана угольных пластов с положительным электродом и в стволе 3 скважины метана угольных пластов с отрицательным электродом согласно традиционным технологиям.

Похожие патенты RU2683438C1

название год авторы номер документа
СПОСОБ УСТРАНЕНИЯ БЛОКИРОВКИ И УВЕЛИЧЕНИЯ ГАЗОПРОНИЦАЕМОСТИ ДЛЯ СКВАЖИН МЕТАНА УГОЛЬНЫХ ПЛАСТОВ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКИХ ИМПУЛЬСОВ 2017
  • Линь, Байцюань
  • Ван, Ихань
  • Янь, Фачжи
  • Чжан, Сянлян
RU2686742C1
ЭЛЕКТРОГИДРОУДАРНОЕ УСТРОЙСТВО ДЛЯ АКТИВАЦИИ НЕФТЕГАЗОНОСНОГО ПЛАСТА И СПОСОБ ПИТАНИЯ ЕГО ЭЛЕКТРИЧЕСТВОМ 2000
  • Лунев В.И.
  • Паровинчак М.С.
  • Зыков В.М.
RU2208142C2
СПОСОБ ДОБЫЧИ МЕТАНА ИЗ УГОЛЬНЫХ ПЛАСТОВ 2014
  • Агеев Петр Георгиевич
  • Агеев Никита Петрович
  • Стрельченко Вадим Валентинович
RU2554611C1
СПОСОБ И УСТРОЙСТВО ВОЗДЕЙСТВИЯ НА НЕФТЕНАСЫЩЕННЫЕ ПЛАСТЫ И ПРИЗАБОЙНУЮ ЗОНУ ГОРИЗОНТАЛЬНОЙ СКВАЖИНЫ 2014
  • Агеев Петр Георгиевич
  • Агеев Никита Петрович
  • Бочкарев Андрей Вадимович
RU2600249C1
СПОСОБ ИНТЕНСИФИКАЦИИ ДОБЫЧИ ПРИРОДНОГО ГАЗА ИЗ УГОЛЬНЫХ ПЛАСТОВ 2006
  • Миллер Мэттью
  • Барыкин Алексей Евгеньевич
  • Браун Эрни
RU2343275C2
ЭЛЕКТРИЧЕСКИЙ И СТАТИЧЕСКИЙ РАЗРЫВ ПЛАСТА 2012
  • Жибер Ален
  • Ре-Бетбедер Франк
  • Жак Антуан
  • Мартен Жюстен
  • Сильвестр Де Феррон Антуан
  • Ресс Тьерри
  • Морель Оливье
  • Лабордери Кристиан
  • Пижодье-Кабо Жиль
RU2588086C2
СПОСОБ ДЕГАЗАЦИИ УГОЛЬНОГО ПЛАСТА 1992
  • Крейнин Е.В.
RU2054557C1
ЭЛЕКТРИЧЕСКИЙ РАЗРЫВ ПЛАСТА 2012
  • Жибер Ален
  • Ре-Бетбедер Франк
  • Жак Антуан
  • Мартен Жюстен
  • Сильвестр Де Феррон Антуан
  • Ресс Тьерри
  • Морель Оливье
  • Лабордери Кристиан
  • Пижодье-Кабо Жиль
RU2592313C2
СПОСОБ ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ СКВАЖИНЫ И НЕФТЕНАСЫЩЕННЫЕ ПЛАСТЫ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Молчанов Анатолий Александрович
  • Агеев Петр Георгиевич
  • Большаков Евгений Павлович
  • Яценко Борис Петрович
RU2373386C1
СПОСОБ ГАЗОДОБЫЧИ ПУТЕМ ПООЧЕРЕДНОГО ИСПОЛЬЗОВАНИЯ МНОГОЭТАПНОГО РАСТРЕСКИВАНИЯ УГОЛЬНОГО МАССИВА ПРИ СЖИГАНИИ С ОБРАЗОВАНИЕМ УДАРНОЙ ВОЛНЫ И НАГНЕТАНИЯ ТЕПЛОНОСИТЕЛЯ 2018
  • Линь Байцюань
  • Чжао Ян
  • Ян Вэй
RU2731428C1

Иллюстрации к изобретению RU 2 683 438 C1

Реферат патента 2019 года СПОСОБ УВЕЛИЧЕНИЯ ГАЗОПРОНИЦАЕМОСТИ ДЛЯ СКВАЖИН МЕТАНА УГОЛЬНЫХ ПЛАСТОВ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ РАЗРЫВА ПРИ ПОМОЩИ ВЗРЫВА ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКИХ ИМПУЛЬСОВ

Способ увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов применим для эксплуатации скважин метана угольных пластов с низкой газопроницаемостью. Сначала от поверхности земли до угольного пласта строят ствол скважины метана угольных пластов с положительным электродом и ствол скважины метана угольных пластов с отрицательным электродом. Зафиксированную платформу, установленную с положительным электродом и устройством для создания высоковольтных импульсов, при помощи буровой вышки размещают по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта в стволе скважины метана угольных пластов с положительным электродом, а другую зафиксированную платформу, установленную с отрицательным электродом, при помощи буровой вышки размещают по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта в стволе скважины метана угольных пластов с отрицательным электродом. Угольный пласт между положительным электродом и отрицательным электродом разрушается при высоком напряжении, и извлечение метана угольных пластов осуществляют в стволе скважины метана угольных пластов с положительным электродом и в стволе скважины метана угольных пластов с отрицательным электродом. Большое количество энергии, создаваемой высоковольтным электрическим импульсом, непосредственно воздействует на угольный резервуар с образованием плазменного канала в угольном пласте между положительным электродом и отрицательным электродом. Большое количество энергии мгновенно проходит через плазменный канал, и создаваемое усилие высокотемпературного теплового расширения и ударные волны воздействуют на угольный пласт, так что эффективно увеличивается количество трещин в угольном пласте и создаются благоприятные условия для течения метана угольных пластов. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 683 438 C1

1. Способ увеличения газопроницаемости для скважин метана угольных пластов с использованием технологии разрыва при помощи взрыва под воздействием электрических импульсов, включающий следующие этапы:

a) построение ствола (2) скважины метана угольных пластов с положительным электродом и ствола (3) скважины метана угольных пластов с отрицательным электродом от поверхности земли до угольного пласта (1), размещение при помощи буровой вышки (11) зафиксированной платформы (4), установленной с положительным электродом (5) и устройством (7) для создания высоковольтных импульсов, расположенным на зафиксированной платформе (4), по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта (1) в стволе (2) скважины метана угольных пластов с положительным электродом и размещение при помощи буровой вышки (11) другой зафиксированной платформы (4), установленной с отрицательным электродом (6), по направлению вниз к заданному участку увеличения газопроницаемости угольного пласта (1) в стволе (3) скважины метана угольных пластов с отрицательным электродом, при этом отрицательный электрод (6) соединен с устройством (7) для создания высоковольтных импульсов через кабель (12);

b) регулировка при помощи консоли (8) зафиксированных платформ (4) в стволе (2) скважины метана угольных пластов с положительным электродом и в стволе (3) скважины метана угольных пластов с отрицательным электродом, так что верхние части зафиксированных платформ (4) находятся в тесном контакте со стенками ствола скважины, положительный электрод (5) и отрицательный электрод (6) на двух зафиксированных платформах (4) также находятся в тесном контакте со стенками ствола скважины, соответственно, и положительный электрод (5) и отрицательный электрод (6) расположены напротив друг друга на одном и том же уровне;

c) включение переключателя (9) высоковольтных электрических импульсов для заряда устройства (7) для создания высоковольтных импульсов через кабель (10), при этом при достижении установленного напряжения разряда устройство (7) для создания высоковольтных импульсов подает электричество на угольный пласт между положительным электродом (5) и отрицательным электродом (6) через положительный электрод (5), и выключение переключателя (9) высоковольтных электрических импульсов после 10–100 разрядов;

d) удаление зафиксированной платформы (4), установленной с положительным электродом (5) и устройством (7) для создания высоковольтных импульсов в стволе (2) скважины метана угольных пластов с положительным электродом, из ствола (2) скважины метана угольных пластов с положительным электродом, удаление другой зафиксированной платформы (4), установленной с отрицательным электродом (6) в стволе (3) скважины метана угольных пластов с отрицательным электродом, из ствола (3) скважины метана угольных пластов с отрицательным электродом и запуск извлечения метана угольных пластов согласно традиционным технологиям.

2. Способ по п.1, отличающийся тем, что частота разряда устройства (7) для создания высоковольтных импульсов составляет 5–30 Гц, а диапазон напряжения находится в пределах 500–9000 кВ.

3. Способ по п.1, отличающийся тем, что расстояние между стволом (2) скважины метана угольных пластов с положительным электродом и стволом (3) скважины метана угольных пластов с отрицательным электродом составляет 150–1200 м.

4. Способ по п.1, отличающийся тем, что устройство (7) для создания высоковольтных импульсов содержит конденсатор (13) и пусковой механизм (14) импульса, соединенный с конденсатором (13).

Документы, цитированные в отчете о поиске Патент 2019 года RU2683438C1

WO 2016165396 A1, 20.10.2016
СПОСОБ РАЗРАБОТКИ НЕФТЕГАЗОВЫХ, СЛАНЦЕВЫХ  И УГОЛЬНЫХ МЕСТОРОЖДЕНИЙ 2012
  • Линецкий Александр Петрович
RU2518581C2
Устройство для смачивания барабанов дорожных катков 1929
  • Камелин С.А.
SU19253A1
US 4084638 A1, 18.04.1978
CN 104832149 A, 12.08.2015.

RU 2 683 438 C1

Авторы

Линь Байцюань

Янь Фачжи

Чжан Сянлян

Кун Цзя

Лю Тин

Чжу Чуаньцзе

Даты

2019-03-28Публикация

2016-12-15Подача