Устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения Российский патент 2019 года по МПК F24D19/10 F24D3/00 

Описание патента на изобретение RU2683974C1

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий.

Известно устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения (патент РФ №2485407, МПК F24D3/00, опубл. 20.06.2013), содержащее подающий и обратный трубопроводы, перемычку соединяющую подающий и обратный трубопроводы с насосом смешения, регулятор расхода тепла на отопление с датчиками температуры воды на отопление и температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе.

Недостатком являются энергозатраты, обусловленные необходимостью демонтажных работ по замене перемычки, соединяющей подающий и обратный трубопроводы с насосом смешения, разрушающейся при длительной эксплуатации под воздействием загрязнений, поступающих из обратного трубопровода.

Известно устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения (см., патент РФ №2581975, опубл. 20.04.2016), содержащее устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения, содержащее подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление и температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регистратор температуры наружного воздуха и регистратор температуры воды на отопление, которые соединены с соответствующими датчиками температуры, причем каждый из регуляторов температуры содержит блоки сравнения, задания и нелинейной обратной связи, а также электронный и магнитный усилители, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженным регулятором скорости вращения в виде блока порошковых электромагнитных муфт, при этом магнитные усилители регистратора температуры наружного воздуха и регистратора температуры воды на отопление электрически соединены с соответствующим регулятором скорости вращения регулирующего клапана и насоса смешивания, кроме того, внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки.

Недостатком является непроизводительные энергозатраты на работу насоса смешивания при снижении потребления горячего теплоносителя, обеспечивающего поддержание нормированного температурного режима в отапливаемом помещении, особенно для производственных и офисных зданий, в периоды отсутствия людей, в ночное время, праздники и выходные дни, а также при внезапном повышении температуры наружного воздуха в отопительный период, в том числе и за счет интенсивного солнечного излучения.

Технической задачей предлагаемого технического решения изобретения является снижение энергозатрат на привод насоса смешивания в условиях поддержания нормированного температурного режима в отапливаемом помещении за счет регулирования поступления теплоносителя, при регистрации его температуры и соответственно плотности в обратном трубопроводе перед подачей через насос смешивания по перемычке в подающий трубопровод.

Технический результат по снижению энергозатрат достигается тем, что устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения содержит подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регистратор температуры наружного воздуха и регистратор температуры воды на отопление, которые соединены с соответствующими датчиками температуры, причем каждый из регуляторов температуры содержит блоки сравнения, задания и нелинейной обратной связи, а также электронный и магнитный усилители, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженным регулятором скорости вращения в виде блока порошковых электромагнитных муфт, при этом магнитные усилители регистратора температуры наружного воздуха и регистратора температуры воды на отопление электрически соединены с соответствующим регулятором скорости вращения регулирующего клапана и насоса смешивания, кроме того, внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки, при этом на перемычке, соединяющей подающий и обратный трубопроводы, выполнен регулятор количества теплоносителя, расположенный между насосом смешивания и обратным трубопроводом и соединенный с датчиком температуры теплоносителя в обратном трубопроводе.

На фиг. 1 схематично представлено предлагаемое устройство с регулятором количества теплоносителя и с датчиком температуры теплоносителя в обратном трубопроводе, на фиг. 2 - продольный разрез перемычки с нанопокрытием внутренней поверхности.

Устройство состоит из подающего трубопровода 1, обратного трубопровода 2, перемычки 3, соединенной с подающим 1 и обратным 2 трубопроводами, насоса смешивания 4 на перемычке 3, регулятора расхода тепла на отопление 5 с датчиком температуры воды на отопление 6, датчика температуры наружного воздуха 7, регулирующего клапана 8 на подающем трубопроводе 1. Регулятор расхода тепла на отопление 5 включает регистратор температуры наружного воздуха 9 с датчиком 7 и регистратор температуры воды 10 на отопление с датчиком 6. Регистратор температуры наружного воздуха 9 содержит блок сравнения 11 и блок задания 12, при этом блок сравнения 11 соединен с входом электронного усилителя 13, оборудованного блоком нелинейной обратной связи 14, кроме того, блок сравнения 11 соединен с датчиком 7 температуры наружного воздуха. Выход электронного усилителя 13 соединен с входом магнитного усилителя 15 с выпрямителем на выходе, подключенным к регулятору скорости вращения 16 в виде блока порошковых электромагнитных муфт, который размещен между приводом 17 и регулирующим клапаном 8 на подающем трубопроводе 1. Регистратор температуры воды 10 содержит блок сравнения 18 и блок задания 19, при этом блок сравнения 18 соединен с входом электронного усилителя 20, оборудованного блоком нелинейной обратной связи 21, кроме того, блок сравнения 18 соединен с датчиком 6 температуры воды на отопление. Выход электронного усилителя 20 соединен с входом магнитного усилителя 22 с выпрямителем на выходе, подключенным к регулятору скорости вращения 23 в виде блока порошковых электромагнитных муфт, который размещен между приводом 24 и насосом смешивания 4 на перемычке 3. Внутренняя поверхность 25 перемычки 3, соединяющей подающий трубопровод 1 и обратный трубопровод 2, покрыта наноматериалом в виде стеклоподобной пленки 26.

На перемычке 3, соединяющей подающий 1 и обратный 2 трубопроводы, выполнен регулятор количества теплоносителя 27, расположенный между насосом смешивания 4 и обратным трубопроводом 2 и соединенный с датчиком температуры 28 теплоносителя в обратном трубопроводе 2.

Устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения работает следующим образом.

Энергозатраты на отопление в системах теплоснабжения определяются необходимостью поддержания в отопительный период комфортных условий нахождения людей в помещении и/или обеспечении заданного температурного режима для эффективной работы размещенного оборудования и приборов. Обеспечение нормированных энергозатрат системы теплоснабжения рассчитывается для установившегося стационарного теплообмена помещения с окружающей средой и осуществляется путем регулирования подачи горячего теплоносителя в зависимости от температуры наружного воздуха, регистрируемой датчиком температуры 7 и задаваемой температурой внутреннего воздуха помещения.

В переходные периоды: зима-весна, осень-зима, особенно с наличием интенсивного солнечного излучения, а так же в праздничные и предпраздничные дни, в ночное время суток, преимущественно для производственных и офисных помещений, наблюдается нестационарный теплообмен между внутренним воздухом помещения, в связи отсутствия людей и возможности снижения температуры в нем, и наружным воздухом окружающей среды.

Снижение подачи горячего теплоносителя в подающем трубопроводе 1, при неизменной площади съема тепловой энергии отапливаемыми приборами в помещении, приводит к уменьшению температуры теплоносителя, например при использовании в качестве теплоносителя воды в обратном трубопроводе 2 по сравнению с заданной в условиях стационарного теплообмена и, как следствие, возрастанию её плотности (см., например, Вукалович М. П. Теплофизические свойства воды и водяного пара. М.: Машиностроение. 1967. - 160с.). В результате через насос смешивания 4 проходит большее количество теплоносителя из обратного теплопровода 2 из-за возросшей плотности и, соответственно массы, что приводит к увеличению энергозатрат на привод 24.

Поступление более холодного теплоносителя из обратного трубопровода 2, что регистрируется датчиком 6, через перемычку 3, по сравнению с расчетным значением для стационарного режима, способствует снижению энергетического потенциала горячего теплоносителя в подающем трубопроводе 1. Тогда для обеспечения нормированной температуры в отапливаемом помещении, увеличивается подача от источника тепла (на фиг. не показано) по подающему трубопроводу 1 (см. например, Автоматизированные системы теплоснабжения и отопления. Чистов С. А.[и др.]. Л.: Стройиздат. Ленингр. отд-ние. 1987. - 248с., ил).

Следовательно, нестационарность теплообмена между отапливаемым помещением и наружным воздухом окружающей среды приводит к дополнительным энергозатратам, как на привод насоса смешивания 4, так и на увеличение расхода горячего теплоносителя. При этом время перехода с одного на другой стационарный режим теплообмена между отапливаемым помещением и окружающей средой, определяется площадью теплосъема отопительных приборов и существенно повышает энергоемкость системы теплоснабжения.

При выполнении на перемычке 3, соединяющий подающий 1 и обратный 2 трубопроводы, между насосом смешивания 4 и обратным трубопроводом 2, регулятора 27 количества теплоносителя с датчиком температуры 28 теплоносителя в обратном трубопроводе 2, осуществляется поддержание нормированных температурных параметров в переходные периоды, следующим образом.

По мере снижения температуры теплоносителя в обратном трубопроводе 2 из-за уменьшения подачи горячего теплоносителя в подающем трубопроводе 1, вследствие повышения температуры наружного воздуха и/или увеличения солнечной радиации, а так же наличия праздничных и предпраздничных дней и в ночное время, датчик температуры 28 подает сигнал на регулятор 27 количества теплоносителя. В результате, количество теплоносителя из обратного трубопровода 2 с пониженной температурой и, как следствие, увеличенной массой из-за возросшей плотности, направляется в регулятор 27, где его объемный расход сокращается до размеров соответствующих количеству теплоносителя с ранее нормированными значениями при данной температуре для условий стационарного теплообмена.

В результате уменьшения количество подаваемого к насосу смешивания 4, охлажденного сверх нормативного значения теплоносителя, из обратного трубопровода 2, обеспечивается постоянство мощности его привода 24, и количество горячего теплоносителя от источника тепла поступает неизменным в соответствии с регистрируемой датчиком 7 температурой, в подающий трубопровод 1. Следовательно, регистрация температуры теплоносителя в обратном трубопроводе 2 и последующее его регулирование в регуляторе 27 перед подачей к насосу смешивания 4 обеспечивает поддержание заданной температуры внутреннего воздуха в переходный период отопления без дополнительных энергозатрат в целом всей системой теплоснабжения.

Вода после потребителей тепловой энергии, например, нагревательных приборов, перемещается по обратному трубопроводу 2, насыщенная загрязнениями и с высокой степенью концентрации как парообразных, так и преимущественно твердых (ржавчина, окалина и т.д.) частиц, поступает на перемычку 3, где эти загрязнения интенсивно налипают на ее внутреннюю поверхность 25. В результате работы насоса смешивания 4 создается перепад давления в перемычке 3 между обратным трубопроводом 2 и подающим трубопроводом 1, который воздействует на налипающие по внутренней поверхности 25 парообразные пузырьки. Последующие, непрерывно происходящие перемещения парообразных пузырьков и твердых загрязнений, движущихся с потоком перекачиваемой воды, приводят к разрывности целостности потока, т.е. внезапным гидравлическим ударам, вызывающим повреждение металла, т.е. возникновению кавитации (см., например, Соколов Е.Я. Теплофикация и тепловые сети. Изд. 8 М.: МЭИ, 2009. - 257 с., ил.).

Следовательно, последующая эксплуатация устройства для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения приводит к необходимости замены перемычки 3 и, как следствие, дополнительных энергозатрат, связанных с демонтажными работами. При покрытии наноматериалом в виде стеклоподобной пленки 26 внутренней поверхности 25 перемычки 3 загрязнения не налипают и, соответственно, не образуются парообразные пузырьки, которые перемещаются в подающий трубопровод 1. В результате смешивания очищенной воды, поступающей в подающий трубопровод 1 из источника тепловой энергии, и воды из обратного трубопровода 2, концентрация загрязнений резко уменьшается, что обеспечивает условия длительной эксплуатации устройства автоматизированного регулирования расхода тепла (см., например, Киш Л. Кинетика электрохимического растворения металлов. М.: МИР, 1990. - 272 с., ил.).

Известно, что наличие клапана в трубопроводе как регулирующего устройства просто, но низкоэффективно из-за снижения его теплофизических параметров - давления, особенно на перемычке между подающим и обратным трубопроводами (см., например, Ионин А.А., Теплоснабжение. М.: Стройиздат. 1982. - 336 с., ил.), когда осуществляется частое регулирование расхода воды, что вызывает повышенный перерасход энергии на привод насоса смешения.

При наличии нормированной температуры наружного воздуха (см., например, СНиП «Строительная климатология и геофизика». М., 1993. - 80 с., ил.) и соответствующей температуры воды в подающей тепловой сети, регулятор скорости вращения 23 в виде порошковых электромагнитных муфт передает заданную мощность привода 17 и насос смешения 4 на перемычке 3 работает с необходимым расходом воды при оптимальных энергозатратах.

Если температура наружного воздуха понижается, что фиксируется датчиком 7, и сигнал, поступающий от него в регистратор температуры наружного воздуха 9 регулятора расхода тепла на отопление 5, становится меньше, чем сигнал от блока задания 12 и на выходе блока сравнения от блока задания 12, то на выходе блока сравнения 11 появится сигнал положительной полярности, который поступает на вход электрического усилителя 13 одновременно с сигналом нелинейной обратной связи 14. За счет этого в электронном усилителе 13 компенсируется нелинейность характеристики привода 17 регулирующего клапана 8 на подающем трубопроводе 1. Сигнал с выхода электронного усилителя 13 поступает на вход магнитного усилителя 15, где усиливается по мощности, выпрямляется и подается на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт.

Положительная полярность сигнала электронного усилителя 13 вызывает увеличение тока возбуждения на выходе магнитного усилителя 15, в регуляторе скорости вращения 16 возрастает момент от привода 17, открывая на большую величину регулируемый клапан 8, тем самым увеличивая подачи горячего теплоносителя по подающему трубопроводу 1 на отопление в системе теплоснабжения.

Увеличение расхода горячего теплоносителя в подающем трубопроводе 1 фиксируется датчиком температуры воды 6 на отопление, который при превышении нормированного значения (по условиям погодно-климатического расположения отапливаемого здания (см. СНиП 2.04.05-02 «Отопление, вентиляция, кондиционирование». М.: ЦНТП, 2004 г. - 94 с.) подает в регистратор температуры воды 10 сигнал, который становится большим, чем сигнал от блока задания 19, и на выходе блока сравнения 18 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 20 одновременно с сигналом нелинейной обратной связи 21. За счет этого в электронном усилителе 20 компенсируется нелинейность характеристики привода 24 насоса смешивания 4 на перемычке 3. Сигнал с выхода электронного усилителя 20 поступает на вход магнитного усилителя 22, где усиливается по мощности, выпрямляется и подается на регулятор скорости вращения 23 в виде блока порошковых электромагнитных муфт.

Отрицательная полярность сигнала электронного усилителя 20 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 22, в результате уменьшается момент от привода 24 и подача теплоносителя в систему теплоснабжения, что и приводит к уменьшению температуры в подающем трубопроводе 1 на отопление здания.

При кратковременном, в течение одних суток или нескольких дней в неделю, повышении температуры наружного воздуха под воздействием, например, солнечной радиации или оттепели, что фиксируется датчиком 7, сигнал, поступающий от него на регистратор температуры наружного воздуха 9 регулятора расхода тепла на отопление 5, становится большим, чем сигнал от блока задания 12, и на выходе блока сравнения 11 появится сигнал отрицательной обратной полярности, который поступает на вход электронного усилителя 13 одновременно с сигналом нелинейной обратной связи 14. Сигнал с выхода электронного усилителя 13 поступает на вход магнитного усилителя, где усиливается по мощности, выпрямляется и подается на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 13 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 15, в регуляторе скорости вращения 16 снижется момент от привода 17, прикрывается регулирующий клапан 8, тем самым уменьшая подачу горячего теплоносителя по подающему трубопроводу 1 на отопление в системе теплоносителя.

Уменьшение расхода горячего теплоносителя в подающем трубопроводе 1 фиксируется датчиком температуры воды 6, который при понижении ниже нормированного значения подает сигнал на регулятор температуры воды 10, который становится меньшим, чем сигнал от блока задания 19, и на выходе блока сравнения от блока задания 19 и на выходе блока сравнения 18 появляется сигнал положительной направленности, который поступает на вход электронного усилителя 20 одновременно с сигналом нелинейной обратной связи 21. Сигнал с выхода электронного усилителя 20 поступает на вход магнитного усилителя 22, где усиливается по мощности, выпрямляется и подается на регулятор скорости вращения 23 в виде блока порошковых электромагнитных муфт.

Положительная полярность сигнала электронного усилителя 20 вызывает увеличение тока возбуждения на выходе магнитного усилителя 22, в результате увеличивается величина момента от привода 27 и подача теплоносителя из обратного трубопровода 2 на отопление в систему теплоснабжения, что и приводит к поддержанию нормированной температуры в подающем трубопроводе 1 на отопление здания с экономией теплоносителя, т.е. наблюдается устранение перегрева помещений при кратковременном повышении температуры наружного воздуха.

Оригинальность предлагаемого технического решения заключается в поддержании нормированных энергозатрат при переходе из одного стационарного режима отопления, определяемого заданной температурой наружного воздуха, в другой стационарный режим отопления, определяемый изменяющейся температурой внутреннего воздуха помещения. Это осуществляется за счет устранения необходимости дополнительной мощности на привод насоса смешивания, обусловленной увеличения массы теплоносителя, поступающей с пониженной температурой из обратного трубопровода, путем выполнения регулятора количества теплоносителя с датчиками температуры и расположенном на перемычке перед насосом смешивания.

Похожие патенты RU2683974C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ РАСХОДА ТЕПЛА НА ОТОПЛЕНИЕ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ 2011
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Федоров Сергей Сергеевич
  • Тютюнов Дмитрий Николаевич
  • Кобелев Владимир Николаевич
  • Овчаренко Олег Алексеевич
RU2485407C1
УСТРОЙСТВО АВТОМАТИЗИРОВАННОГО РЕГУЛИРОВАНИЯ РАСХОДА ТЕПЛА НА ОТОПЛЕНИЕВ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ 2014
  • Храмцова Елена Георгиевна
  • Кобелев Владимир Николаевич
  • Кобелев Николай Сергеевич
  • Емельянов Алексей Сергеевич
  • Титов Дмитрий Витальевич
RU2581975C1
Устройство для автоматизированного расхода тепла на отопление в системах теплоснабжения 2017
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Кобелев Владимир Николаевич
  • Умеренкова Элина Владимировна
  • Умеренков Евгений Владимирович
  • Семичева Наталья Евгеньевна
  • Протасов Дмитрий Александрович
RU2682960C1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ 2010
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Фёдоров Сергей Сергеевич
  • Кобелев Владимир Николаевич
  • Ершова Елена Ивановна
RU2431781C1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ 2013
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Кобелев Владимир Николаевич
  • Серебровский Владимир Исаевич
RU2533701C2
УСТРОЙСТВО ДЛЯ ПОФАСАДНОГО РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ 2016
  • Константинов Игорь Сергеевич
  • Федоров Сергей Сергеевич
  • Кобелев Николай Сергеевич
RU2624428C1
АБОНЕНТСКИЙ ВВОД СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ 2013
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Алябьева Татьяна Васильевна
  • Кобелев Владимир Николаевич
RU2551867C1
АБОНЕНТСКИЙ ВВОД СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ 2010
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Плетнёва Вера Павловна
  • Котенко Сергей Владимирович
RU2427762C1
АБОНЕНТСКИЙ ВВОД СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ 2011
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Алябьева Татьяна Васильевна
  • Овчаренко Олег Алексеевич
  • Озеров Антон Александрович
  • Дубяга Анатолий Платонович
RU2488746C1
УСТРОЙСТВО РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ 2010
  • Кобелев Николай Сергеевич
  • Ореховская Анна Андреевна
  • Кобелев Владимир Николаевич
  • Желанов Алексей Леонидович
  • Желанова Любовь Алексеевна
  • Федоров Сергей Сергеевич
RU2427763C1

Иллюстрации к изобретению RU 2 683 974 C1

Реферат патента 2019 года Устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий. Технической задачей предложенного изобретения является снижение энергозатрат на привод насоса смешивания в условиях поддержания нормированного температурного режима в отапливаемом помещении за счет регулирования поступления теплоносителя из обратного трубопровода при регистрации температур теплоносителя и соответственно его плотности в обратном трубопроводе перед подачей через насос смешивания по перемычке в подающий трубопровод. Технический результат по снижению энергозатрат достигается тем, что устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения содержит подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регистратор температуры наружного воздуха и регистратор температуры воды на отопление, которые соединены с соответствующими датчиками температуры, причем каждый из регистраторов температуры содержит блоки сравнения, задания и нелинейной обратной связи, а также электронный и магнитный усилители, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженным регулятором скорости вращения в виде блока порошковых электромагнитных муфт, при этом магнитные усилители регистратора температуры наружного воздуха и регистратора температуры воды на отопление электрически соединены с соответствующим регулятором скорости вращения регулирующего клапана и насоса смешивания, кроме того, внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки, при этом на перемычке, соединяющей подающий и обратный трубопроводы, выполнен регулятор количества теплоносителя, расположенный между насосом смешивания и обратным трубопроводом и соединенный с датчиком температуры теплоносителя в обратном трубопроводе. 2 ил.

Формула изобретения RU 2 683 974 C1

Устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения, содержащее подающий и обратный трубопроводы, перемычку, соединяющую подающий и обратный трубопроводы с насосом смешивания, регулятор расхода тепла на отопление с датчиками температуры воды на отопление температуры наружного воздуха, регулирующий клапан с приводом в подающем трубопроводе, при этом регулятор расхода тепла на отопление включает регистратор температуры наружного воздуха и регистратор температуры воды на отопление, которые соединены с соответствующими датчиками температуры, причем каждый из регистраторов температуры содержит блоки сравнения, задания и нелинейной обратной связи, а также электронный и магнитный усилители, кроме того, насос смешивания снабжен приводом с регулятором скорости вращения и регулирующим клапаном с приводом в подающем трубопроводе, снабженным регулятором скорости вращения в виде блока порошковых электромагнитных муфт, при этом магнитные усилители регистратора температуры наружного воздуха и регистратора температуры воды на отопление электрически соединены с соответствующим регулятором скорости вращения регулирующего клапана и насоса смешивания, кроме того, внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки, отличающееся тем, что на перемычке, соединяющей подающий и обратный трубопроводы, выполнен регулятор количества теплоносителя, расположенный между насосом смешивания и обратным трубопроводом и соединенный с датчиком температуры теплоносителя в обратном трубопроводе.

Документы, цитированные в отчете о поиске Патент 2019 года RU2683974C1

УСТРОЙСТВО АВТОМАТИЗИРОВАННОГО РЕГУЛИРОВАНИЯ РАСХОДА ТЕПЛА НА ОТОПЛЕНИЕВ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ 2014
  • Храмцова Елена Георгиевна
  • Кобелев Владимир Николаевич
  • Кобелев Николай Сергеевич
  • Емельянов Алексей Сергеевич
  • Титов Дмитрий Витальевич
RU2581975C1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ РАСХОДА ТЕПЛА НА ОТОПЛЕНИЕ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ 2011
  • Кобелев Николай Сергеевич
  • Емельянов Сергей Геннадьевич
  • Федоров Сергей Сергеевич
  • Тютюнов Дмитрий Николаевич
  • Кобелев Владимир Николаевич
  • Овчаренко Олег Алексеевич
RU2485407C1
АВТОМАТИЗИРОВАННЫЙ ТЕПЛОВОЙ ПУНКТ СИСТЕМЫ ОТОПЛЕНИЯ (ВАРИАНТЫ) 2005
  • Буровцев Владимир Алексеевич
RU2300709C2
Устройство для регулирования температуры воздуха в помещении 1984
  • Михайленко Илья Михайлович
SU1193378A1
Водогрейный секционный котел для утилизации тепла газов, отходящих от кухонных очагов или варочных котлов 1951
  • Нагурный Н.Д.
SU96934A1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ 2010
  • Емельянов Сергей Геннадьевич
  • Кобелев Николай Сергеевич
  • Алябьева Татьяна Васильевна
  • Фёдоров Сергей Сергеевич
  • Кобелев Владимир Николаевич
  • Ершова Елена Ивановна
RU2431781C1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ 2004
  • Кобелев Н.С.
  • Котенко Э.В.
  • Семичева Н.Е.
  • Кобелев В.Н.
  • Степанов В.Ф.
RU2263848C1
Устройство для механической дойки 1934
  • Ременец Ю.Ф.
SU49605A1
Устройство для регулирования расхода тепла на отопление в системе теплоснабжения 1983
  • Фаликов Валерий Соломонович
  • Шелудько Виктор Васильевич
  • Миронов Владимир Степанович
  • Паршуков Александр Николаевич
SU1218262A1
Автоматизированный тепловой пункт 1986
  • Гайстер Юрий Самуилович
  • Добротворцев Юрий Михайлович
  • Здасюк Сергей Георгиевич
  • Зельцер Владимир Львович
  • Кащеев Вадим Петрович
  • Обухов Борис Валентинович
  • Чепиков Владимир Алексеевич
  • Яровой Юрий Васильевич
SU1413366A1
Устройство для регулирования расхода теплоносителя в тепловом пункте 1987
  • Дерновой Владимир Викторович
  • Рожков Николай Николаевич
  • Хайхян Роберт Андроникович
  • Головков Михаил Викторович
  • Кунахович Анатолий Ионикиевич
  • Тарнопольский Моисей Данилович
SU1575011A1
Система централизованного регулирования отпуска теплоты тепличному комбинату 1988
  • Гурвич Лев Исаакович
SU1555600A1
DE 102016218227 A1, 22.03.2018.

RU 2 683 974 C1

Авторы

Кобелев Николай Сергеевич

Емельянов Сергей Геннадьевич

Кобелев Владимир Николаевич

Семичева Наталья Евгеньевна

Умеренкова Элина Владимировна

Умеренков Евгений Валерьевич

Забелин Игорь Сергеевич

Даты

2019-04-03Публикация

2018-09-18Подача