METHOD FOR DETERMINING THERMAL OXIDATIVE STABILITY AND TEMPERATURE RESISTANCE OF LUBRICATING MATERIALS Russian patent published in 2019 - IPC G01N25/02 G01N33/30 

Abstract RU 2685582 C1

FIELD: measurement technology.

SUBSTANCE: invention relates to technology of assessing quality of liquid lubricants. Disclosed is a method of determining thermo-oxidative stability and temperature resistance of lubricating materials, in which samples of lubricant material of constant mass are tested in the presence of air at temperatures below critical, selected depending on base, lubricant assignment and group of operational properties, during the time, which characterizes the same oxidation degree. Novelty is that lubricant sample tests are carried out at one or more temperatures, wherein at regular intervals the temperature-controlled lubricant sample is weighed, mass of evaporated lubricant is determined, part of sample is taken for direct photometry and determination of optical density, part of sample is used to determine kinematic viscosity. Coefficient of thermal oxidative stability is calculated as the sum of optical density and evaporation rate, the index of thermooxidative stability is determined as product of optical density by viscosity index or as product of thermal-oxidative stability index by viscosity index. Graphical dependences of the thermo-oxidative stability index on the optical density or on the thermal oxidative stability coefficient are plotted, and the effect of the base of the lubricant is determined from the inclination angle to the abscissa axis, test temperature, oxidation products or thermal decomposition or together oxidation products and temperature decomposition by the viscosity index value, wherein larger tangent of dependence angle, higher viscosity index at pre-set optical density.

EFFECT: high information value of the method of determining thermo-oxidative stability and temperature resistance of lubricating materials by taking into account the effect of temperature, oxidation, evaporation, temperature decomposition and viscosity-temperature characteristics.

4 cl, 3 tbl, 3 dwg

Similar patents RU2685582C1

Title Year Author Number
METHOD OF DETERMINING THERMAL OXIDATIVE STABILITY OF LUBRICANT MATERIALS 2015
  • Kovalskij Boleslav Ivanovich
  • Petrov Oleg Nikolaevich
  • Bezborodov Yurij Nikolaevich
  • Shram Vyacheslav Gennadevich
RU2598624C1
METHOD FOR DETERMINING THERMAL-OXIDATIVE STABILITY OF LUBRICANTS 2016
  • Kovalskij Boleslav Ivanovich
  • Petrov Oleg Nikolaevich
  • Shram Vyacheslav Gennadevich
  • Abazin Dmitrij Dmitrievich
RU2618581C1
METHOD OF DETERMINATION OF THERMAL-OXIDATIVE STABILITY OF LUBRICANTS 2017
  • Kovalskij Boleslav Ivanovich
  • Ermilov Evgenij Aleksandrovich
  • Bezborodov Yurij Nikolaevich
  • Petrov Oleg Nikolaevich
  • Sokolnikov Aleksandr Nikolaevich
RU2637621C1
METHOD FOR DETERMINING THE EFFICIENCY RANGE OF LUBRICANTS 2016
  • Kovalskij Boleslav Ivanovich
  • Bezborodov Yurij Nikolaevich
  • Afanasov Vladimir Ilich
  • Ermilov Evgenij Aleksandrovich
  • Batov Nikolaj Sergeevich
RU2650602C1
METHOD FOR DETERMINING THERMAL-OXIDATIVE RESISTANCE OF LUBRICANTS 2016
  • Kovalskij Boleslav Ivanovich
  • Sokolnikov Aleksandr Nikolaevich
  • Ermilov Evgenij Aleksandrovich
  • Balyasnikov Valerij Aleksandrovich
  • Batov Nikolaj Sergeevich
RU2627562C1
METHOD OF CLASSIFICATION OF LUBRICANTS ON PARAMETERS OF THERMOXIDATING STABILITY 2016
  • Kovalskij Boleslav Ivanovich
  • Bezborodov Yurij Nikolaevich
  • Afanasov Vladimir Ilich
  • Runda Mikhail Mikhajlovich
  • Batov Nikolaj Sergeevich
RU2625037C1
METHOD FOR DETERMINING THE RATIO BETWEEN OXIDATION AND EVAPORATION PRODUCTS OF LUBRICATING OILS DURING THERMOSTATING 2020
  • Kovalskij Boleslav Ivanovich
  • Sokolnikov Aleksandr Nikolaevich
  • Petrov Oleg Nikolaevich
  • Shramm Vyacheslav Gennadevich
RU2745699C1
METHOD OF DETERMINING RATIO BETWEEN PRODUCTS OF THERMAL DECOMPOSITION AND EVAPORATION OF LUBRICATING OILS DURING THERMOSTATING 2020
  • Kovalskij Boleslav Ivanovich
  • Sokolnikov Aleksandr Nikolaevich
  • Petrov Oleg Nikolaevich
  • Shramm Vyacheslav Gennadevich
RU2741242C1
METHOD FOR DETERMINING INTENSITY OF OXIDATION PROCESSES OF LUBRICATING OILS 2016
  • Kovalskij Boleslav Ivanovich
  • Vereshchagin Valerij Ivanovich
  • Bezborodov Yurij Nikolaevich
  • Sokolnikov Aleksandr Nikolaevich
  • Ermilov Evgenij Aleksandrovich
RU2621471C1
METHOD FOR DETERMINING THE INFLUENCE OF TEMPERATURE AND BASIC BASIS OF LUBRICANTS ON CONCENTRATION OF THERMOSTATING PRODUCTS 2021
  • Kovalskij Boleslav Ivanovich
  • Bezborodov Yurij Nikolaevich
  • Petrov Oleg Nikolaevich
  • Sokolnikov Aleksandr Nikolaevich
RU2754096C1

RU 2 685 582 C1

Authors

Kovalskij Boleslav Ivanovich

Bezborodov Yurij Nikolaevich

Petrov Oleg Nikolaevich

Efremova Elena Aleksandrovna

Dates

2019-04-22Published

2018-07-23Filed