Изобретение относится к области измерительной техники и может быть использовано для измерения плотности и других физических параметров бурового раствора непосредственно в процессе бурения скважин.
Известно устройство для одновременного определения параметров бурового раствора (см. RU 2085726 С1, 27.07.1997), осуществляющее определение параметров непосредственно в процессе бурения нефтяных и газовых скважин и содержащее установленные на измерительном трубопроводе, соединенные с желобом датчик температуры, гамма-датчик плотности, электромагнитный расходомер. На желобе перед измерительным трубопроводом установлен дополнительный датчик уровня. Выходы всех датчиков соединены с входами коммутатора, выход которого соединен с входом микроЭВМ. При этом датчик уровня выполнен нейтронным и состоит из биологической защиты, источника нейтронов и детекторов, между которыми расположен слой из поглощающего медленные нейтроны материала. В данном устройстве посредством нейтронного датчика уровня, измеряющего уровень бурового раствора в желобе и электромагнитного расходомера, гаммаплотномера, а также датчика температуры, измеряющих соответственно расход, плотность и температуру бурового раствора в измерительном трубопроводе, после корреляционной обработки данных об указанных параметрах раствора в желобе и измерительном трубопроводе, получают реальные значения контролируемых параметров бурового раствора.
Недостатком этого известного устройства является низкая точность измерения объемного и массового расходов раствора из-за расхождения по истинным площадям поперечного сечения раствора в желобе и в измерительном трубопроводе, а также конструктивная сложность.
Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для контроля плотности и компонентного состава бурового раствора в трубопроводе (см. патент на полезную модель №34015 С1, 20.11.2003). Данное устройство включат в себя первый и второй источники гамма-излучения, первый, второй и третий детекторы гамма-излучения, измерительный участок трубопровода, первый, второй и третий измерители средней частоты импульсов, первую, вторую и третью схемы формирования и выделения импульсов, вычислительный блок, индикаторный блок, первую и вторую схемы сравнения сигналов, первую и вторую схемы НЕ, триггер адреса рабочего детектора, схему И управления электропитанием второго детектора. Принцип работы этого устройства заключается в использовании взаимодействия гамма-излучения с буровым раствором и предусматривает вычисление плотности раствора посредством определения в вычислительном блоке объемных концентраций компонентов раствора с учетом плотности жидкости и минеральных плотностей компонентов твердой фазы.
К недостатку этого известного технического решения можно отнести сложность процедуры вычисления плотности бурового раствора.
Техническим результатом данного устройства является упрощение процедуры измерения плотности бурового раствора.
Технический результат достигается тем, что в устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе, содержащее источник излучения, детектор, измерительный участок трубы и индикатор, введены элемент ввода сигнала в измерительный участок трубы, металлический штырь, перемещающийся по поверхности измерительного участка трубы, измерительный участок трубы длиной в несколько полуволн, выполнен из диэлектрического материала и соединен последовательно торцами с легкосплавленной бурильной трубой, причем выход источника излучения соединен с элементом ввода сигнала в измерительный участок трубы, выход металлического штыря подключен к входу детектора, выход которого соединен с входом индикатора.
Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что вычисление расстояния между узлом и пучностью стоячей электромагнитной волны в диэлектрическом измерительном отрезке трубы с буровым раствором, дает возможность измерить плотность бурового раствора в легкосплавленной бурильной трубе.
Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу измерения плотности бурового раствора в легкосплавленной бурильной трубе на основе вычисления расстояния между узлом и пучностью электромагнитной волны в диэлектрическом измерительном отрезке трубы с буровым раствором с желаемым техническим результатом, т.е. упрощением процедуры измерения плотности бурового раствора.
На чертеже представлена функциональная схема предлагаемого устройства.
Устройство содержит источник излучения 1, соединенный выходом с элементом ввода сигнала 2, измерительный участок трубы 3, металлический штырь 4, детектор 5 и индикатор 6.
Устройство работает следующим образом. Отрезок измерительного участка трубы 3, снабженный на торцах металлическими штырями (по одному штырю на каждом торце), и легкосплавленную бурильную трубу, по которой транспортируется буровой раствор, последовательно соединяют с помощью специальных фланцев, расположенных на торцах выше указанных труб. После этого при протекании бурового раствора через отрезок диэлектрического отрезка измерительного участка трубы, направляют на поверхность этой трубы электромагнитную волну посредством элемента ввода сигнала 2, принимаемого электромагнитную волну с выхода источника излучения 1. Волна, пройдя через диэлектрическую поверхность данного отрезка, далее распространяется по трубе и взаимодействует с буровым раствором, протекающим по ней. В рассматриваемом случае отрезок трубы можно представить как круглый волновод длиной в несколько полуволн (например, 5), заполненный веществом.
Из теорий распространения электромагнитных волн по волноводам известно что, в последних могут существовать множества типов колебаний волн. При определенных геометрических размерах (диаметре) отрезка трубы (волновода), можно возбудить в трубе один тип волны, например, магнитную волну Ни. В данном случае выбор радиуса измерительного участка трубы, обеспечивающего существование в ней определенного типа волны, целесообразно произвести с учетом радиуса легкосплавленной бурильной трубы. При этом для того чтобы возбужденная в отрезке измерительного участка трубы волна, не распространялась за пределами данной трубы (область отсечки), радиус этого отрезка трубы следует выбирать меньшим чем радиус легкосплавленной бурильной трубы (ЛБТ). В итоге последовательное механическое соединение двух таких труб с разными диаметрами, обеспечит в измерительном отрезке трубы режим критической длины волны (частоты), исключающий распространение волны за пределами измерительного отрезка. В диапазоне 2,62<λ<3,41R, где λ - длина волны, R - радиус измерительного участка трубы, по нему может распространяться только один тип волны. Кроме того, распространение до торцов ЛБТ возбужденной в измерительном участке волны и наличие на торцах измерительного участка трубы металлических штырей, закрепленных на стенках измерительного отрезка, в этом случае, приведет к образованию режима стоячей волны в отрезке измерительного участка трубы с буровым раствором.
Стоячая волна, как правило, характеризуется узлами и пучностями амплитуды напряженности, например, электрического поля. В силу этого в данном техническом решении длина измерительного участка трубы (волновода) может составить несколько полуволн (λ/2) и по ее наружной поверхности перемещают одним концом небольшой металлический штырь 4, реагирующий (съем) на изменение амплитуды электрического поля стоячей волны в волноводе со средой (буровым раствором). Другой конец металлического штыря, подключенный электрически к входу детектора 5, используется для передачи сигнала.
При взаимодействии стоячей волны с буровым раствором в волноводе для показателя преломления n данной среды можно записать
где ε - диэлектрическая проницаемость бурового раствора, μ - магнитная проницаемость борового раствора. С учетом приведенного выражения длину электромагнитной волны в данном случае можно выразить как
λв-λ0/n
где λ0 - длина волны в вакууме (воздухе), λв - длина стоячей волны в волноводе со средой. В рассматриваемом случае принимается μ=1. Тогда для волны в контролируемой среде получаем
С дугой стороны для длины стоячей волны λв можно записать
где l - расстояние между соседними узлами (или пучностями) стоячей волны в волноводе с буровым раствором. Совместное преобразование выражений (1) и (2) позволяет принимать
Последнее выражение показывает, что при постоянном значении Хо, определением расстояния между соседними пучностями стоячей волны, можно вычислить диэлектрическую проницаемость бурового раствора в измерительном участке трубы, т.е. в ЛБТ. Однако ввиду того, что между соседними пучностями имеет место узел стоячей волны, зависимость 8 от 1 может иметь неоднозначный характер. Поэтому для исключения неоднозначной зависимости между этими параметрами, в предлагаемом устройстве предлагается измерить расстояние, например, между узлом и пучностью. Для этого металлический штырь перемещают по наружной поверхности отрезка измерительной трубы до тех пор, пока, выходной сигнал детектора не станет минимальным, т.е. фиксируют узел амплитуды стоячей волны. После этого дальнейшее перемещение штыря приведет к максимальному значению амплитуды стоячей волны (выходной сигнал детектора), соответствующему пучности амплитуды стоячей волны. Следовательно, измерение расстояния между узлом и пучностью стоячей волны при его изменении выходным сигналом детектора, даст возможность получить информацию (однозначную) диэлектрической проницаемости бурового раствора. В силу этого если обозначить расстояние между узлом и пучностью стоячей волны то формула (3) примет вид
В рассматриваемом случае зависимость между искомой величиной - плотностью бурового раствора и его диэлектрической проницаемостью можно выразить формулой Клаузиуса-Мосотти
(ε-1)M/(ε+2)ρ=4πNaα,
где М - молекулярный вес, ρ - плотность, Na - число Авогадро, α - поляризуемость. Из последнего выражения для ε получаем
где A=4πNaα.
Совместное решение выражений (4) и (5) позволяет записать для плотности ρ бурового раствора
В итоге, при постоянных значениях параметров М, А и λ0, измерением расстояния между узлом и пучностью стоячей волны в отрезке трубы с буровым раствором, можно вычислить плотность контролируемой среды. В данном устройстве выходной сигнал детектора, соответствующий изменению расстоянию , т.е. плотности раствора, далее поступает на вход индикатора 6, где отражается информация о плотности бурового раствора в ЛБТ.
Таким образом, в предлагаемом техническом решении определение расстояния между узлом и пучностью стоячей волны в измерительном участке трубы дает возможность упростит процедуру измерения плотности бурового раствора в легкосплавленной бурильной трубе.
Предлагаемое устройство, помимо его применения непосредственно в процессе бурения нефтяных и газовых скважин, может быть использовано и для решения других задач, например, в криогенной технике для контроля физических параметров (плотности, расхода) жидких криогенных продуктов.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАЛЫХ ЗНАЧЕНИЙ ТОКОВ | 2017 |
|
RU2654911C1 |
Устройство для контроля положения границы раздела сред | 1982 |
|
SU1015256A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ | 2016 |
|
RU2634090C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВНУТРЕННЕГО ДИАМЕТРА МЕТАЛЛИЧЕСКОЙ ТРУБЫ | 2021 |
|
RU2767586C1 |
Датчик высоты потока в трубопроводе с незаполненной жидкостью | 2020 |
|
RU2762520C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВИБРАЦИИ СКВАЖИННОГО ИНСТРУМЕНТА | 2023 |
|
RU2816252C1 |
СПОСОБ ИЗМЕРЕНИЯ ВНУТРЕННЕГО ДИАМЕТРА МЕТАЛЛИЧЕСКОЙ ТРУБЫ | 2018 |
|
RU2691288C1 |
Устройство для определения количества бурового раствора в емкости | 2017 |
|
RU2670367C1 |
КОНЦЕНТРАТОМЕР | 2013 |
|
RU2536184C1 |
СВЕРХВЫСОКОЧАСТОТНЫЙ РЕЗОНАНСНЫЙ ГИРОСКОП | 2003 |
|
RU2258908C2 |
Изобретение относится к области измерительной техники и может быть использовано для измерения плотности и других физических параметров бурового раствора непосредственно в процессе бурения скважин. Техническим результатом является упрощение процедуры измерения плотности бурового раствора. В устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе, содержащее источник излучения, детектор, измерительный участок трубы и индикатор, введены элемент ввода сигнала в измерительный участок трубы, металлический штырь, перемещающийся по поверхности измерительного участка трубы, измерительный участок трубы длиной в несколько полуволн выполнен из диэлектрического материала и соединен последовательно торцами с легкосплавленной бурильной трубой, причем выход источника излучения соединен с элементом ввода сигнала в измерительный участок трубы, выход металлического штыря подключен к входу детектора, выход которого соединен с входом индикатора. 1 ил.
Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе, содержащее источник излучения, детектор, измерительный участок трубы и индикатор, отличающееся тем, что в него введены элемент ввода сигнала в измерительный участок трубы, металлический штырь, перемещающийся по поверхности измерительного участка трубы, при этом измерительный участок трубы длиной в несколько полуволн выполнен из диэлектрического материала и соединен последовательно торцами с легкосплавленной бурильной трубой, причем выход источника излучения соединен с элементом ввода сигнала в измерительный участок трубы, выход металлического штыря подключен к входу детектора, выход которого соединен с входом индикатора.
Транспортное устройство | 1931 |
|
SU34015A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАЛЫХ ЗНАЧЕНИЙ ТОКОВ | 2017 |
|
RU2654911C1 |
СПОСОБ ИЗМЕРЕНИЯ МАЛЫХ СОПРОТИВЛЕНИЙ, В ТОМ ЧИСЛЕ И СОПРОТИВЛЕНИЯ СТОК-ИСТОК ОТКРЫТОГО КАНАЛА ПОЛЕВОГО ТРАНЗИСТОРА | 2011 |
|
RU2451297C1 |
Устройство для определения количества бурового раствора в емкости | 2017 |
|
RU2670367C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТЕЙ ИЛИ ГАЗОВ | 2009 |
|
RU2415409C1 |
ИЗМЕНЯЕМОЕ ПО ДЛИНЕ СОЕДИНЕНИЕ ВСАСЫВАЮЩЕЙ ТРУБЫ С ПЫЛЕВЫМ КАНАЛОМ | 2006 |
|
RU2375581C1 |
Авторы
Даты
2019-05-15—Публикация
2018-11-01—Подача