СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО ИМПЛАНТАТА Российский патент 2019 года по МПК A61L27/30 A61L27/06 A61F2/28 A61C8/00 

Описание патента на изобретение RU2687792C1

Изобретение относится к медицине, а именно, к способу изготовления внутрикостных имплантатов из титана и может быть использовано при изготовлении эндопротезов и зубных имплантатов на титановой основе, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий.

В настоящее время развиваются различные методы обработки металлических поверхностей с целью улучшения их биосовместимых свойств и для ускорения процесса заживления внутрикостных имплантатов. Эти методы основаны на морфологической или биохимической модификации физических, химических и механических свойств, в частности, изменении поверхностной энергии, поверхностного заряда, химического состава и топографии поверхности титановых имплантатов.

В стремлении повысить качество внутрикостных имплантатов мировых производителей наблюдается устойчивая тенденция модификации их поверхности путем формирования пористого слоя, способного обеспечивать их надежную фиксацию в кости и создавать наиболее благоприятные условия для остеоинтеграции.

В последние годы возникло новое перспективное направление, связанное с применением лазерной технологии для обработки поверхности металлических материалов с целью формирования топографии наружного слоя заданными параметрами, улучшения их биосовместимых, трибологических и коррозионных свойств. С помощью такой технологии можно решить все указанные выше задачи модификации комплекса поверхностных свойств титановых имплантатов.

Исследования показали, что лазерная обработка поверхности металлических имплантатов обеспечивает относительно высокую чистоту процесса, оптимальную шероховатость поверхности и хорошую биосовместимость с костной тканью. Основной целью разработчиков данных технологий ставилось достижение лучшего контакта кости и имплантата за счет совершенства топографии на его поверхности путем формирования лазерным лучом отдельных углублений заранее заданных конкретных размеров. (Лазерная модификация поверхности титановых имплантатов М.А. Васильев, М.М. Нищенко, П.А. Гурин, Успехи физ. мет./ Usp.Fiz. Met. 2010, т. 11, сс. 209-247 © 2010 ИМФ (Институт металлофизики им. Г.В. Курдюмова НАН Украины)).

Вместе с тем, пролиферативная активность поверхности (т.е. склонность к размножению и расселению клеточных культур по поверхности неорганического материала) и способность управлять направлением дифференциации клеток (направленное образование того или иного типа соединительной ткани) - ключевые функциональные характеристики, определяющие успешность интеграции имплантата (эндопротеза) на длительные сроки. Вместе с тем, для увеличения остеоинтеграционной способности титановых имплантатов широко используется поверхностная модификация и нанесение биоактивных покрытий, наиболее эффективными из которых являются кальций-фосфатные соединения, как известно, являющиеся основной минеральной составляющей костной ткани.

Известен способ изготовления стоматологического имплантата с многослойным биоактивным покрытием (патент РФ 2146535, МПК A61L 27/00, опубл. 20.03.00, Бюл. 8). Данный способ включает предварительную пескоструйную обработку имплантата для получения шероховатости поверхности и плазменное напыление, которое позволяет обеспечить адгезионную прочность, однако не создает поверхностной упорядоченной пористости покрытия, в результате чего снижается уровень его остеоинтеграции.

Известен способ модифицирования поверхности титановых имплантатов, взятый за прототип (патент РФ 2630578, МПК A61L 27/06, опубл. 11.09.17, Бюл. - 26), заключающийся в предварительной подготовке поверхности основы имплантата, изготовленного из титана, включающей механическую обработку механическую полировку титановой основы, очистку поверхности с последующим оксидированием титана и его сплавов. Данный способ не позволяет получить достаточную поверхностную пористость покрытия, что снижает его остеоинтеграционные свойства.

Задачей предлагаемого изобретения является создание способа формирования топографии наружного пористого слоя с заранее заданными геометрическими параметрами, остеоинтеграционным свойствам оксидной пленки, образующейся на поверхности внутрикостных имплантатов для обеспечения равномерного распределения жевательного давления на костную ткань и условий для более надежной их первичной и долговременной фиксации.

Поставленная задача решается тем, что при осуществлении способа изготовления внутрикостного имплантата, содержащем предварительную механическую обработку и очистку титановой основы, поверхность внутрикостной части имплантатов дополнительно обрабатывают в среде аргона построчно сканирующим лучом импульсного волоконного лазера с длиной волны излучения 1,064 мкм, выходной мощностью 20-30 Вт, с частотой следования импульсов 20-40 кГц, максимальной энергией в импульсе 2,0-3,0 мДж и скоростью сканирования 100-150 мм/с, с условным размером лазерного пятна на обрабатываемой поверхности 10-15 мкм и межстрочным расстоянием 5-10 мкм, с послойным испарением определенной части титана до формирования заданной топографии наружного слоя, причем, окончательный проход лазерным лучом осуществляют на атмосферном воздухе с образованием пористого слоя диоксида титана, затем поверхность имплантата подвергают химическому травлению в растворе электролита 500 мл HCl (плотностью 1,19 г/мл); 500 мл

H2O; 170 г/л NH4F*HF при комнатной температуре 25-30°C с выдержкой 2-3 мин, с последующей промывкой в воде и выдержкой в течение 30-40 мин в растворе HNO3 (400 г/л) при температуре 55-60°C с последующей промывкой в воде, после чего, окончательно, проводят отжиг в печи при температуре 400-550°C в вакууме.

В результате на обрабатываемой поверхности внутрикостной части образуется микропористый слой диоксида титана TiO2.

Химическое травление в указанном растворе необходимо для удаления с поверхности имплантата, образуемых в результате лазерной абляции попутных оксидов и соединений, кроме основного диоксида титана.

Пассивация титанового имплантата в растворе HNO3 (400 г/л) необходима для дополнительного роста и укрепления кристаллической структуры диоксида титана.

Для удаления связанной воды и кислот, остающихся в порах, снятия механических напряжения оксидной пленки и кристаллизации оксида титана проводят отжиг в печи в вакууме при температуре 400-550°C.

Таким образом, предлагаемый способ получения поверхности с заданными параметрами топографии наружного слоя, обеспечивает достаточно высокую химическую чистоту поверхности имплантата, выполненного из технически чистого титана марки ВТ-1.0, благодаря чему, формирование костной ткани происходит в порах внутрикостной части с

достаточно развитой поверхностью, свободной от вредных примесей, что в итоге обеспечивает необходимую первичную стабильность и надежную фиксацию имплантата в костной ткани, и его долговременное функционирование.

Техническим результатом данного изобретения является получение структуры биосовместимого (биоинертного) покрытия на имплантатах, состоящего из диоксида титана, что повышает смачиваемость, всасывающую способность и позволяет внедряться в них молекулам.

Пример.

На фиг. 1 изображены необходимые проекции и разрезы предлагаемого внутрикостного зубного имплантата, взятого в качестве примера.

На фиг. 2 представлены результаты электронно-растровой микроскопии поверхности имплантата из титана марки ВТ-1.0, полученной непосредственно после лазерной обработки, в соответствии с предлагаемым способом изготовления с увеличением исследуемого изображения: а) - в 100; б) - в 500; с) - в 1000; д) - в 3000 раз.

На фиг. 3 представлено изображение растрового файла для формирования топографии поверхности внутрикостной части имплантата на лазерном гравере МиниМаркер 2.

Внутрикостный дентальный имплантат содержит ортопедическую головку 1 с резьбовым осевым отверстием 2 (для фиксации протеза), гингивальную

часть в виде конуса 3 и внутрикостную часть 4, выполненную в виде пластины с закругленной апикальной частью, клиновидной формы в ее поперечном сечении и отверстиями 5 конической формы, перпендикулярными к продольной плоскости пластины. Отверстия 5 внутрикостной части выполнены с диаметром, выбранным в пределах 0,1-0,3 мм, и глубиной 0,1-0,3 мм расположены вдоль продольной оси и в перпендикулярном направлении с шагом 0,1-0,5 мм. На обеих поверхностях внутрикостной части осесимметрично выполнены поперечные впадины 6, при этом вершины впадин расположены на одной прямой, под углом к оси имплантата.

Образец дентального имплантата выполнен из титанового сплава ВТ-1.0 (%, Ti 98,6-99,7, Fe до 0,18, С до 0,07, Si до 0,1). После предварительной подготовки поверхности, включающей механическую обработку титановой основы, очистку поверхности, дополнительно обработали в среде аргона построчно сканирующим лучом импульсного волоконного лазера (лазерный гравер МиниМаркер 2) с длиной волны излучения 1,064 мкм. При этом, лазерный луч проходит строку по поверхности внутрикостной части слева направо, а затем поднимается вверх и проходит следующую строку. Регулировка мощности сканирующего луча осуществляется в соответствии с заранее подготовленным растровым файлом в CorelDraw см. фиг. 3. Здесь уровень энергии излучения лазерного гравера (от импульса к импульсу) автоматически устанавливается по оттекам серого цвета. Выходная

мощность, при этом, устанавливалась на лазерном гравере на уровне 20 Вт, с частотой следования импульсов 20 кГц, максимальной энергией в импульсе 2,0-3,0 мДж и скоростью сканирования 150 мм/с, с условным размером лазерного пятна на обрабатываемой поверхности 10 мкм и межстрочным расстоянием 5-10 мкм. В среде аргона осуществили семь проходов с послойным испарением определенной части титана до формирования заданной топографии наружного слоя, причем, окончательный, восьмой, проход лазерным лучом произвели на атмосферном воздухе с образованием пористого слоя диоксида титана. Затем поверхность имплантата подвергли химическому травлению в растворе электролита 500 мл HCl (плотностью 1,19 г/мл); 500 мл H2O; 170 г/л NH4F*HF при комнатной температуре 25°C с выдержкой 2 мин, с последующей промывкой в воде и выдержкой в течение 30 мин в растворе HNO3 (400 г/л) при температуре 60°C с последующей промывкой в воде, после чего, окончательно, провели отжиг в печи при температуре 500°C в вакууме.

При этом оплавленные и закристаллизованные лазерные дорожки (фиг. 2) имели ширину 20-40 мкм и глубину 10-30 мкм с расстоянием между отверстиями от лазерных импульсов от 20-30 мкм.

Необходимые зависимости, формирующие геометрию обеих поверхностей пластинчатой внутрикостной части имплантата в виде осесимметричных впадин с отверстиями, полученные на основе анализа математической модели напряженно-деформированного состояния опорных

тканей, обеспечивают наиболее равномерное распределение напряжений в костной ткани по всей высоте имплантационного ложа в условиях функциональных жевательных нагрузок.

Предлагаемая конструкция внутрикостной части имплантата обеспечивает остеоинтеграционное прорастание костных клеточных структур в отверстия, диаметр которых соответствует архитектоники губчатой кости и условиям репаративного остеогенеза.

Преимуществом данного изобретения является также создание внутрикостных имплантатов с высокими остеоинтеграционными свойствами, что способствует сокращению сроков лечения методом стоматологической имплантации, а также повышает эффективность при сращивании костей, дистракционном остеосинтезе в стоматологии и травматологии

Похожие патенты RU2687792C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ МИКРО-НАНОСТРУКТУРИРОВАННОГО ПОРИСТОГО СЛОЯ НА ПОВЕРХНОСТИ ТИТАНОВЫХ ИМПЛАНТАТОВ 2018
  • Колганов Игорь Николаевич
  • Захарова Ирина Анатольевна
  • Захаров Максим Игоревич
  • Ревякин Александр Владимирович
RU2677271C1
Способ мягкого синуслифтинга в сочетании с одномоментной имплантацией 2018
  • Купряхин Сергей Вячеславович
  • Купряхин Вячеслав Алексеевич
  • Лепилин Александр Викторович
  • Постников Михаил Александрович
  • Ревякин Александр Владимирович
  • Колганов Игорь Николаевич
RU2672694C1
УСТРОЙСТВО ДЛЯ ОТСЛАИВАНИЯ СЛИЗИСТОЙ ОБОЛОЧКИ ДНА ВЕРХНЕЧЕЛЮСТНОГО СИНУСА ОТ ПОДЛЕЖАЩЕЙ КОСТНОЙ ОСНОВЫ С ОДНОВРЕМЕННЫМ ЗАПОЛНЕНИЕМ ОСВОБОЖДАЮЩЕЙСЯ ПОЛОСТИ ЖИДКИМ КОСТНОПЛАСТИЧЕСКИМ МАТЕРИАЛОМ 2018
  • Купряхин Сергей Вячеславович
  • Купряхин Вячеслав Алексеевич
  • Лепилин Александр Викторович
  • Постников Михаил Александрович
  • Ревякин Александр Владимирович
  • Колганов Игорь Николаевич
RU2672929C1
ВНУТРИКОСТНЫЙ ДЕНТАЛЬНЫЙ ИМПЛАНТАТ 2006
  • Архипов Алексей Вячеславович
  • Архипов Вячеслав Дмитриевич
  • Ревякин Александр Владимирович
RU2325133C1
СПОСОБ ДЕНТАЛЬНОЙ ИМПЛАНТАЦИИ НА ВЕРХНЕЙ ЧЕЛЮСТИ ПРИ ЗНАЧИТЕЛЬНОЙ АТРОФИИ АЛЬВЕОЛЯРНОГО ОТРОСТКА 2015
  • Купряхин Сергей Вячеславович
  • Купряхин Вячеслав Алексеевич
  • Лепилин Александр Викторович
RU2600150C1
ВНУТРИКОСТНЫЙ ЗУБНОЙ ИМПЛАНТАТ 2017
  • Колганов Игорь Николаевич
RU2655198C1
СПОСОБ МОДИФИЦИРОВАНИЯ ТИТАНОВОЙ ПОВЕРХНОСТИ 2012
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
  • Дударева Олеся Александровна
  • Протасова Наталия Владимировна
RU2495678C1
СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ 2015
  • Фомин Александр Александрович
  • Кошуро Владимир Александрович
  • Фомина Марина Алексеевна
  • Штейнгауэр Алексей Борисович
  • Родионов Игорь Владимирович
RU2604085C1
Способ изготовления адаптированных дентальных имплантатов 2019
  • Купряхин Сергей Вячеславович
  • Купряхин Вячеслав Алексеевич
  • Лепилин Александр Викторович
  • Постников Михаил Александрович
  • Купряхин Алексей Вячеславович
RU2716460C1
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВЫХ ИМПЛАНТАТОВ 2016
  • Гуров Александр Алексеевич
  • Порозова Светлана Евгеньевна
  • Рогожников Алексей Геннадьевич
  • Шулятникова Оксана Александровна
RU2630578C1

Иллюстрации к изобретению RU 2 687 792 C1

Реферат патента 2019 года СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО ИМПЛАНТАТА

Изобретение относится к медицине. Способ изготовления внутрикостного имплантата содержит предварительную механическую обработку и очистку титановой основы. Поверхность внутрикостной части имплантатов дополнительно обрабатывают в среде аргона построчно сканирующим лучом импульсного волоконного лазера с длиной волны излучения 1,064 мкм, выходной мощностью 20-30 Вт, с частотой следования импульсов 20-40 кГц, максимальной энергией в импульсе 2,0-3,0 мДж и скоростью сканирования 100-150 мм/с, с условным размером лазерного пятна на обрабатываемой поверхности 10-15 мкм и межстрочным расстоянием 5 -10 мкм, с послойным испарением определенной части титана до формирования заданной топографии наружного слоя. Окончательный проход лазерным лучом осуществляют на атмосферном воздухе с образованием пористого слоя диоксида титана. Затем поверхность имплантата подвергают химическому травлению в растворе электролита 500 мл HCl (плотностью 1,19 г/мл); 500 мл H2O; 170 г/л NH4F*HF при комнатной температуре 25-30°C с выдержкой 2-3 мин, с последующей промывкой в воде и выдержкой в течение 30-40 мин в растворе HNO3 (400 г/л) при температуре 55-60°C с последующей промывкой в воде, после чего, окончательно, проводят отжиг в печи при температуре 400-550°C в вакууме. Изобретение обеспечивает равномерное распределение жевательного давления на костную ткань и условия для более надежной их первичной и долговременной фиксации. 3 ил.

Формула изобретения RU 2 687 792 C1

Способ изготовления внутрикостного имплантата, содержащий предварительную механическую обработку и очистку титановой основы, отличающийся тем, что, поверхность внутрикостной части имплантатов дополнительно обрабатывают в среде аргона построчно сканирующим лучом импульсного волоконного лазера с длиной волны излучения 1,064 мкм, выходной мощностью 20-30 Вт, с частотой следования импульсов 20-40 кГц, максимальной энергией в импульсе 2,0-3,0 мДж и скоростью сканирования 100-150 мм/с, с условным размером лазерного пятна на обрабатываемой поверхности 10-15 мкм и межстрочным расстоянием 5 -10 мкм, с послойным испарением определенной части титана до формирования заданной топографии наружного слоя, причем, окончательный проход лазерным лучом осуществляют на атмосферном воздухе с образованием пористого слоя диоксида титана, затем поверхность имплантата подвергают химическому травлению в растворе электролита 500 мл HCl (плотностью 1,19 г/мл); 500 мл H2O; 170 г/л NH4F*HF при комнатной температуре 25-30°C с выдержкой 2-3 мин, с последующей промывкой в воде и выдержкой в течение 30-40 мин в растворе HNO3 (400 г/л) при температуре 55-60°C с последующей промывкой в воде, после чего, окончательно, проводят отжиг в печи при температуре 400-550°C в вакууме.

Документы, цитированные в отчете о поиске Патент 2019 года RU2687792C1

СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВЫХ ИМПЛАНТАТОВ 2016
  • Гуров Александр Алексеевич
  • Порозова Светлана Евгеньевна
  • Рогожников Алексей Геннадьевич
  • Шулятникова Оксана Александровна
RU2630578C1
СПОСОБ МОДИФИЦИРОВАНИЯ ПОВЕРХНОСТИ ИМПЛАНТАТОВ ИЗ ТИТАНА И ЕГО СПЛАВОВ 2008
  • Иванов Максим Борисович
  • Колобов Юрий Романович
  • Трубицын Михаил Александрович
  • Храмов Георгий Викторович
RU2394601C2
СПОСОБ ПОЛУЧЕНИЯ БИОАКТИВНОГО ПОКРЫТИЯ НА ИМПЛАНТИРУЕМОМ В КОСТНУЮ ТКАНЬ ЧЕЛОВЕКА ТИТАНОВОМ ИМПЛАНТАТЕ 2014
  • Тетюхин Дмитрий Владиславович
  • Козлов Евгений Николаевич
  • Молчанов Сергей Алексеевич
  • Маркеев Андрей Михайлович
  • Соловьёв Анатолий Анатольевич
RU2554819C1
ПОКРЫТИЕ НА ИМПЛАНТАТ ИЗ ТИТАНА И ЕГО СПЛАВОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Родионов Игорь Владимирович
  • Бутовский Константин Георгиевич
  • Серянов Юрий Владимирович
RU2361623C1
US 20090005880 A1, 01.01.2009
WO 1993021969 A1, 11.11.1993
US 20100159118 A1, 24.06.2010.

RU 2 687 792 C1

Авторы

Купряхин Сергей Вячеславович

Купряхин Вячеслав Алексеевич

Колганов Игорь Николаевич

Ревякин Александр Владимирович

Лепилин Александр Викторович

Гришин Алексей Дмитриевич

Федяев Игорь Михайлович

Даты

2019-05-16Публикация

2018-05-07Подача