Изобретение относится к электротехнике, а именно к системной автоматике и релейной защите, и предназначено для реализации в устройствах определения места повреждения линий электропередачи (ЛЭП), в устройствах контроля погасания дуги ЛЭП, измерительных органах дистанционной защиты.
Из существующего уровня техники известен [Шалыт Г.М. Определение мест повреждения линий электропередачи импульсными методами. - М.: Энергия, 1968. Куликов А.Л. Дистанционное определение мест повреждений ЛЭП методами активного зондирования. - М.: Энергоатомиздат, 2006] локационный способ определения расстояния до места короткого замыкания в распределительных сетях, принятый за прототип, который основан на измерении времени между моментом посылки в линию зондирующего электрического импульса t1 и моментом прихода в начало линии импульса, отраженного от места замыкания t2. Расстояние до места ОЗЗ находят как l3=v⋅(t2-t1)/2, где v - скорость распространения зондирующего импульса по линии.
После возникновения короткого замыкания релейная защита отключает линию с повреждением от источника питания, ток короткого замыкания падает до нуля, при этом электрическая дуга в месте короткого замыкания гаснет. После погасания дуги в месте повреждения, короткое замыкание может самоустранится. Поэтому необходимо автоматически запускать локационный процесс с момента возникновения короткого замыкания на линии электропередачи, что определяется пуском релейной защиты (без задержки на время уставки релейной защиты по времени), и посылать зондирующие импульсы до момента отключения линии электропередачи релейной защитой.
Кроме того, одно устройство локационного зондирования обычно обслуживает несколько линий электропередачи, отходящих от шин подстанции. Поэтому в устройстве локационного зондирования необходим коммутатор, который подключает устройство к той линии электропередачи, на которой после появления короткого замыкания сработала релейная защита.
Недостатком известного метода является то, что импульсы локационного зондирования посылаются в случайные (относительно фазы тока короткого замыкания) моменты времени. Но электрические параметры дуги в месте короткого замыкания (например, электрическое сопротивление дуги) зависят как от величины мгновенного значения тока дуги, так и от предыстории, от тока дуги в предыдущие моменты времени (за счет временных эффектов нарастания и спада плотности ионов в дуге, ионизации и деионизации в объеме дуги). Амплитуда отраженного импульса в методе локационного зондирования места короткого замыкания тем выше, чем больше электрическое сопротивление в месте короткого замыкания отличается от волнового сопротивления линии электропередачи. Поэтому оптимально посылать импульсы локационного зондирования в моменты минимального значения электрического сопротивления дуги в месте короткого замыкания.
От амплитуды тока дуги, от электрического напряжения на дуговом промежутке места короткого замыкания, зависит также и электрические шумы, создаваемые дугой, которые мешают точно определить место короткого замыкания. Поэтому оптимально посылать импульсы локационного зондирования в моменты минимального значения амплитуды шумов, создаваемых дугой в месте короткого замыкания.
Задачей изобретения является разработка способа определения места дугового короткого замыкания локационным методом, в котором устранены недостатки прототипа.
Техническим результатом изобретения является повышение точности определения места повреждения ЛЭП за счет использования информации о фазе тока дугового короткого замыкания, о мгновенном значении амплитуды тока дугового короткого замыкания и реализации ее динамической модели, учитывающей изменение электрических параметров места дугового короткого замыкания во времени.
Технический результат достигается тем, что в способе определения места дугового короткого замыкания локационным методом, непрерывно измеряют мгновенные значения силы тока и фазы тока линий электропередачи, процесс измерения запускается сигналом пуска релейной защиты, которая запускается в момент возникновения повреждения на данной линии электропередачи, на линию электропередачи, с которой пришел сигнал релейной защиты, воздействуют зондирующими импульсами, принимают отраженные от места повреждения импульсы, фиксируют время прихода импульса, отраженного от места повреждения, и определяют расстояние до места повреждения по интервалу времени между моментом зондирования и моментом прихода отраженного импульса, с учетом параметров данной линии электропередачи, согласно настоящему изобретению, по измеренным мгновенным значениям силы тока и фазы тока линий электропередачи определяют моменты минимального значения величины электрического сопротивления места дугового короткого замыкания, с которыми синхронизируют моменты формирования зондирующих линию электропередачи импульсов.
Способ реализуется следующим образом.
1. Непрерывно измеряют мгновенные значения силы тока I(t) и фазы тока ϕ(t) линий электропередачи, где t - текущее время. Под фазой тока в данном способе понимается фаза относительно момента времени to перехода значения силы тока I(t) от отрицательных на положительные значения. При этом момент времени to формируется каждый раз, формируя начало периода Т1~0,02 сек синусоидального тока частотой F1~50 Гц. При таких определениях величина фазы тока ϕ(t) по дочитывается по формуле:
ϕ(t)=360⋅(t-to)/T1 (фаза в градусах)
2. Процесс измерения расстояния до места повреждения запускается сигналом пуска релейной защиты, которая запускается в момент возникновения повреждения на данной линии электропередачи, сопровождаемого возникновением дугового замыкания в месте повреждения ЛЭП.
3. На линию электропередачи, с которой пришел сигнал релейной защиты, воздействуют зондирующими импульсами, принимают отраженные от места повреждения импульсы, фиксируют время прихода импульса, отраженного от места повреждения, и определяют расстояние до места повреждения по интервалу времени между моментом зондирования и моментом прихода отраженного импульса, с учетом параметров данной линии электропередачи.
4. Моменты формирования зондирующих линию электропередачи импульсов синхронизированы как с фазой тока ϕ(t) данной линии электропередачи, так и с предысторией мгновенных значений тока I(t) на данной линии электропередачи.
Открытая дуга переменного тока при коротких замыканиях на высоковольтных ЛЭП в моменты перехода тока короткого замыкания через ноль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вследствие перехода тока через ноль и образования прочности промежутка, а главным образом вследствие растяжения дугового столба и образования на нем высокого напряжения горения. При этом напряжение горения дуги при токах более (50-60) А не зависит от силы тока I(t), а только от длины дуги, изменяясь пропорционально ей.
Каждые пол периода (Т1)/2 на дуге переменного тока в установках высокого напряжения происходят следующие процессы.
• Вблизи моментов времени перехода тока дуги I(t) через ноль, вблизи фазы ϕ(t)~0° и ϕ(t)~180°, происходит частичная деионизация дугового объема, и увеличение электрического сопротивления дугового промежутка. При этом, за счет падения тока дуги, происходит уменьшение амплитуд электрических шумов, создаваемых дугой.
• В промежутках между (ϕ(t)~0° и ϕ(t)~180o), (ϕ(t)~180° и ϕ(t)~360°) величина тока дуги I(t) возрастает по синусоидальному закону, и происходит накопление ионизации дугового объема, и пропорциональное уменьшение электрического сопротивления дугового промежутка. Для учета процессов ионизации дугового объема, зависящие от мощности, выделяемой в дуговом промежутке, и процессов деионизации, которые протекают непрерывно, необходимо проводить учет предыстории мгновенных значений тока I(t). Наиболее просто этот учет можно вести, непрерывно интегрируя во времени квадрат силы тока дуги I2(t), отвечающий за процесс ионизации, и процессы деионизации, в простейшем случае моделируемые некой постоянной константой. В такой модели сопротивление дугового промежутка R(t) может быть определено интегралом:
Где интегрирование (момент времени t=0) начинается в начале каждого полупериода (в моменты времени to, и to+T1/2), Ro - остаточное электрическое сопротивление дугового промежутка вблизи моментов времени перехода тока дуги I(t) через ноль. Константы модели а и b описывают процессы ионизации и деионизации.
• Моменты формирования зондирующих линию электропередачи импульсов могут выбираться по разным критериям. Для приоритета уменьшения амплитуд электрических шумов, создаваемых дугой, зондирующие импульсы формируют в моменты времени to, и to+T1/2. Для приоритета минимального электрического сопротивления дугового промежутка, зондирующие импульсы формируют в моменты минимального значения величины R(t).
Таким образом, предлагаемый способ определения места дугового короткого замыкания локационным методом позволяет повысить точность определения места повреждения ЛЭП за счет использования информации о фазе тока дугового короткого замыкания, о мгновенном значении амплитуды тока дугового короткого замыкания и реализации ее динамической модели, учитывающей изменение электрических параметров места дугового короткого замыкания во времени.
Изобретение относится к электротехнике и предназначено для реализации в устройствах определения места повреждения линий электропередачи (ЛЭП), в устройствах контроля погасания дуги ЛЭП, измерительных органах дистанционной защиты. Технический результат: повышение точности определения места повреждения ЛЭП за счет использования информации о фазе тока дугового короткого замыкания, о мгновенном значении амплитуды тока дугового короткого замыкания и реализации ее динамической модели, учитывающей изменение электрических параметров места дугового короткого замыкания во времени. Сущность: непрерывно измеряют мгновенные значения силы тока и фазы тока линий электропередачи. Процесс измерения запускается сигналом пуска релейной защиты, которая запускается в момент возникновения повреждения на данной линии электропередачи. На линию электропередачи, с которой пришел сигнал релейной защиты, воздействуют зондирующими импульсами. Принимают отраженные от места повреждения импульсы. Фиксируют время прихода импульса, отраженного от места повреждения, и определяют расстояние до места повреждения по интервалу времени между моментом зондирования и моментом прихода отраженного импульса с учетом параметров данной линии электропередачи. При этом по измеренным мгновенным значениям силы тока и фазы тока линий электропередачи определяют моменты минимального значения величины электрического сопротивления места дугового короткого замыкания, с которыми синхронизируют моменты формирования зондирующих линию электропередачи импульсов.
Способ определения места дугового короткого замыкания локационным методом, состоящий в том, что непрерывно измеряют мгновенные значения силы тока и фазы тока линий электропередачи, процесс измерения запускается сигналом пуска релейной защиты, которая запускается в момент возникновения повреждения на данной линии электропередачи, на линию электропередачи, с которой пришел сигнал релейной защиты, воздействуют зондирующими импульсами, принимают отраженные от места повреждения импульсы, фиксируют время прихода импульса, отраженного от места повреждения, и определяют расстояние до места повреждения по интервалу времени между моментом зондирования и моментом прихода отраженного импульса, с учетом параметров данной линии электропередачи, отличающийся тем, что по измеренным мгновенным значениям силы тока и фазы тока линий электропередачи определяют моменты минимального значения величины электрического сопротивления места дугового короткого замыкания, с которыми синхронизируют моменты формирования зондирующих линию электропередачи импульсов.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ И СВЯЗИ | 2013 |
|
RU2517982C1 |
Устройство для определения расстояния до места повреждения на линиях электропередачи | 1980 |
|
SU983591A1 |
СПОСОБ АВТОМАТИЧЕСКОГО ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО МЕСТА ПОВРЕЖДЕНИЯ В ВОЗДУШНЫХ ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ | 0 |
|
SU235158A1 |
US 9453871 B2, 27.09.2016 | |||
WO 1983000562 A1, 17.02.1983 | |||
US 20100211348 A1, 19.08.2010. |
Авторы
Даты
2019-05-16—Публикация
2018-04-20—Подача