СПОСОБ ИЗГОТОВЛЕНИЯ ОМИЧЕСКИХ КОНТАКТОВ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ Российский патент 2019 года по МПК H01L31/18 

Описание патента на изобретение RU2687851C1

Изобретение относится к солнечной энергетике, в частности, к способу изготовления фотоэлектрических преобразователей (ФЭП), и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую энергию.

При изготовлении омических контактов фотоэлектрического преобразователя важным фактором является минимизация омических потерь. Изготовление фотоэлементов малого размера, площадью 2-3 мм2, приводит к существенному усложнению технологии постростовой обработки гетероструктур при создании омических контактов шириной 3-5 мкм, обладающими хорошей адгезией, низким омическим сопротивлением и высокой электрической проводимостью.

Известен способ изготовления омических контактов фотоэлектрического преобразователя (см. патент RU 2458430, МПК H01L 21/28, МПК В82В 3/00, опубликован 10.08.2012), включающий формирование маски фоторезиста, химическую очистку поверхности гетероструктуры, осаждение слоев Ge и Cu общей толщиной 100-500 нм, первую термообработку гетероструктуры, удаление маски фоторезиста и вторую термообработку.

Недостатком известного способа изготовления омических контактов фотоэлектрического преобразователя является его малая толщина, что приводит к снижению электрической проводимости омического контакта, и, как следствие, к снижению КПД и мощности фотоэлектрического преобразователя.

Известен способ изготовления омических контактов фотоэлектрического преобразователя (см. патент US 9269784, МПК H01L 29/7786, опубликован 23.02.2016), включающий формирование на подложке из GaAs первого полупроводникового слоя, второго полупроводникового слоя, контактного слоя и проводящего слоя омического контакта. Создание омического контакта проводят осаждением слоев металлов из следующей группы: Ti, Al, Ni, W, Ge, Pt, Pd, Cu или их комбинации, или их сплавов.

Недостатком известного способа изготовления омических контактов фотоэлектрического преобразователя является малая толщина омического контакта, недостаточная адгезия осаждаемых слоев, что ведет к увеличению омических потерь.

Известен способ изготовления омических контактов фотоэлектрического преобразователя (см. патент CN 104733556, МПК H01L 31/0216, H01L 31/18, опубликован 01.02.2017), включающий создание на полупроводниковой гетероструктуре антиотражающего покрытия, фронтального омического контакта путем осаждения слоев Au, AuGeNi, Au, Ag, Au, общей толщиной порядка 5 мкм, тыльного омического контакта путем осаждения слоев Ti, Pd, Ag, общей толщиной порядка 3 мкм.

Недостатком известного способа изготовления омических контактов фотоэлектрического преобразователя является низкая адгезия и плотность осажденных слоев омических контактов, что приводит к снижению их электрической проводимости и увеличению омических потерь.

Известен способ изготовления омических контактов фотоэлектрического преобразователя (см. патент RU 2515420, МПК H01L 31/18, опубликован 10.05.2014), заключающийся в том, что на полупроводниковой гетероструктуре A3B5 формируют фоторезистивную маску с окнами под лицевые контакты, проводят напыление слоев лицевой металлизации, удаляют фоторезист, напыляют слои тыльного контакта, отжигают контакты и формируют просветляющее покрытие. Для напыления слоев лицевой металлизации используют слои хрома толщиной 5÷15 нм, серебра толщиной 5÷15 нм, золото-германия толщиной 50÷80 нм, серебра толщиной 5÷6 мкм, золота толщиной 30÷80 нм.

Недостатком известного способа изготовления омических контактов фотоэлектрического преобразователя является низкая химическая стойкость омических контактов, выполненных на основе серебра, что ведет к снижению срока эксплуатации ФЭП.

Известен способ изготовления омических контактов фотоэлектрического преобразователя (см. патент RU 2357326, МПК H01L 31/18, опубликован 27.05.2009), совпадающий с настоящим решением по наибольшему числу существенных признаков и принятый за прототип. Способ-прототип включает напыление на гетероструктуру A3B5 основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку полученной структуры, формирование фронтального и тыльного омических контактов путем электрохимического осаждения серебра в импульсном режиме при горизонтальном расположении пластины над поверхностью электролита, причем после осаждения серебра наращивают защитный слой золота. Фронтальный омический контакт формируют через вторую фоторезистивную маску с расширенным на 1-2 мкм рисунком фронтального контакта.

Недостатками известного способа-прототипа являются большие омические потери изготовленного фотоэлектрического преобразователя. Наращивание контактов осуществляется с использованием серебра при постоянной плотности тока, что ведет к снижению адгезии, химической стойкости и плотности омических контактов, что в свою очередь приводит к снижению их электрической проводимости. При использовании расширенной на 1-2 мкм маски фоторезиста для проведения электрохимического утолщения фронтального омического контакта происходит снижение точности задания топологии прибора за счет разрастание контакта на фоточувствительную область. При создании фронтального омического контакта заданной конфигурации происходит увеличение омических потерь, вызванное перегревом фотоэлектрического преобразователя из-за несоответствия топологии омического контакта расчетным параметрам и нарушение баланса фоточувствительной области и области омического контакта.

Задачей настоящего технического решения является улучшение фотоэлектрических параметров ФЭП за счет уменьшения омических потерь.

Поставленная задача достигается тем, что способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру A3B5 основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку полученной структуры, формирование фронтального омического контакта через вторую фоторезистивную маску и тыльного омического контакта путем электрохимического осаждения золота в импульсном режиме при частоте импульсного сигнала 30-200 Гц, коэффициенте заполнения 0,2-0,5 сначала при плотности тока 0,002-0,005 мА/мм2 1-2 минуты, а затем при плотности тока 0,02-0,05 мА/мм2 до заданной толщины. Фронтальный омический контакт формируют через вторую фоторезистивную маску с суженным на 0,5-1 мкм рисунком фронтального омического контакта.

Электрохимическое осаждение золота выполняют для увеличения электрической проводимости омических контактов. Проведение электрохимического осаждения золота в импульсном режиме при частоте импульсного сигнала 30-200 Гц, коэффициенте заполнения 0,2-0,5 и использование двух режимов электрохимического осаждения золота сначала при плотности тока 0,002-0,005 мА/мм2, а затем при плотности тока 0,02-0,05 мА/мм2 обеспечивает снижению пористости и увеличение плотности омического контакта, что ведет к увеличению его адгезии и электрической проводимости, и, как следствие, к уменьшению омических потерь, к увеличению КПД и мощности ФЭП. При частоте импульсного сигнала менее 30 Гц или более 200 Гц и коэффициенте заполнения менее 0,2 или более 0,5 осаждение слоев золота происходит с образование пор, что свидетельствует о снижении плотности и адгезии омического контакта. Плотность тока на первом этапе электрохимического осаждения 0,002-0,005 мА/мм2 используют для снижения скорости роста золота на стадии зародышеобразования, что обеспечивает увеличение плотности омического контакта. Осаждение на первом этапе проводят в течение 1-2 минут, что обеспечивает образование тонкого слоя золота повышенной плотности на всей области основы омического контакта. При проведении осаждения менее 1 минуты не достигается создание сплошного слоя золота, осаждение более 2 минут является технологически не целесообразным из-за низкой скорости роста золота. Плотность тока 0,02-0,05 мА/мм2 обеспечивает формирование слоя золота заданной толщины при скорости роста 0,05-0,1 мкм/мин. При плотности тока менее 0,02 мА/мм2 скорость роста золота снижается, что приводит к существенному увеличению трудозатрат и технологически не целесообразно. При плотности тока более 0,05 мА/мм2 снижается плотность осаждаемого золота, что приводит к уменьшению электрической проводимости омического контакта.

Формирование фронтального омического контакта через фоторезистивную маску с суженным на 0,5-1 мкм рисунком фронтального омического контакта выполняют для увеличения точности топологии контакта. Золото обладает высокими параметрами твердости, что ведет к деградации фоторезистивной маски при его электрохимическом осаждении и, соответственно, к увеличению степени затенения фоточувствительной области. Создание суженной на 0,5-1 мкм фоторезистивной маски нивелирует процесс разрушения маски, так как при электрохимическом осаждении золота происходит разрастание омического контакта на 0,5-1 мкм на область, закрытую маской. Увеличение точности топологии фронтального омического контакта приводит к снижению омических и оптических потерь, так как задание топологии прибора выполняется в точном соответствии с расчетными параметрами фоточувствительной области и области омического контакта.

Настоящее техническое решение поясняется чертежами, где:

на фиг. 1 показан этап напыления основы тыльного омического контакта и формирования первой фоторезистивной маски;

на фиг. 2 показан этап напыления основы фронтального омического контакта;

на фиг. 3 приведен этап создания второй фоторезистивной маски;

на фиг. 4 приведен этап электрохимического осаждения золота на основы фронтального и тыльного омических контактов.

Настоящий способ изготовления омических контактов фотоэлектрического преобразователя осуществляют следующим образом. На фоточувствительную полупроводниковую гетероструктуру 1 A3B5 (см. фиг. 1) напыляют основу 2 тыльного омического контакта. Далее создают первую фоторезистивную маску 3 с рисунком основы фронтального омического контакта. Напыляют основу 4 фронтального омического контакта, удаляют первую фоторезистивную маску 3 вместе с напылеными на нее слоями основы 4 фронтального омического контакта (см. фиг. 2). Проводят термообработку полученной структуры при температуре 360-370°С в течение 30-60 сек. Затем создают вторую фоторезистивную маску 5 с суженным на 0,5-1 мкм рисунком фронтального омического контакта (см. фиг. 3). Проводят формирование фронтального и тыльного омических контактов путем электрохимического осаждения золота 6 в импульсном режиме при частоте импульсного сигнала 30-200 Гц, коэффициенте заполнения 0,2-0,5 сначала при плотности тока 0,002-0,005 мА/мм2 в течение 1-2 минут, а затем при плотности тока 0,02-0,05 мА/мм2 до заданной толщины. Удаляют маску 5. (см. фиг. 4).

Пример 1. Были изготовлены омические контакты фотоэлектрического преобразователя настоящим способом. На фоточувствительную полупроводниковую гетероструктуру GaInP/GaAs/Ge, выращенную на подложке германия n-типа проводимости, напылили основу тыльного омического контакта Au(Ge)/Ni/Au. Сформировали первую фоторезистивную маску с рисунком основы фронтального омического контакта и напылили основу фронтального омического контакта Ag(Mn)/Ni/Au. Удалили первую фоторезистивную маску вместе с напыленной на нее основой фронтального омического контакта. Провели термообработку полученной структуры при температуре 360°С в течение 30 сек. Затем сформировали вторую фоторезистивную маску с суженным на 0,5 мкм рисунком фронтального омического контакта. Провели формирование фронтального омического контакта через вторую фоторезистивную маску и тыльного омического контакта путем электрохимического осаждения золота из цианистого электролита золочения в импульсном режиме при частоте импульсного сигнала 30 Гц, коэффициенте заполнения 0,2 в два этапа. На первом этапе при пониженной плотности тока j=0,002 мА/мм2 в течение 1 минуты, и на втором этапе при плотности тока j=0,02 мА/мм2 до толщины 5 мкм.

Пример 2. Были изготовлены омические контакты фотоэлектрического преобразователя способом, описанном в примере 1, со следующими отличиями. Фоточувствительную полупроводниковую гетероструктуру AlGaAs/GaAs, вырастили на подложке арсенида галлия р-типа проводимости, напылили основу тыльного омического контакта Ag(Mn)/Ni/Au, напылили основу фронтального омического контакта Au(Ge)/Ni/Au. Проводили термообработку полученной структуры при температуре 370°С в течение 60 сек. Формировали вторую фоторезистивную маску с суженным на 1 мкм рисунком фронтального омического контакта. Формировали фронтальный и тыльный омические контакты электрохимическим осаждением золота общей толщиной 2 мкм из цианистого электролита золочения в импульсном режиме при частоте импульсного сигнала 200 Гц, коэффициенте заполнения 0,5 вначале при плотности тока j=0,003 мА/мм2 в течение 2 минут, а затем при плотности тока j=0,03 мА/мм2.

Пример 3. Были изготовлены омические контакты фотоэлектрического преобразователя способом, описанном в примере 1, со следующими отличиями. Фоточувствительную полупроводниковую гетероструктуру AlGaAs/GaAs, вырастили на подложке арсенида галлия n-типа проводимости. Проводили термообработку полученной структуры при температуре 360°С в течение 60 сек. Формировали вторую фоторезистивную маску с суженным на 0,7 мкм рисунком фронтального омического контакта. Формировали фронтальный и тыльный омические контакты электрохимическим осаждением слоев золота общей толщиной 3 мкм из цианистого электролита золочения в импульсном режиме при частоте импульсного сигнала 60 Гц, коэффициенте заполнения 0,4 вначале при плотности тока j=0,005 мА/мм2 в течение 1 минуты, а затем при плотности тока j=0,05 мА/мм2.

Результатом процесса изготовления омических контактов фотоэлектрического преобразователя стало увеличение плотности и адгезии фронтального и тыльного омических контактов, и увеличение их электрической электропроводности. Достигнуто также увеличение точности задания топологии фронтального омического контакта. Полученные результаты позволили снизить омические потери, увеличить КПД и мощность фотоэлектрического преобразователя.

Похожие патенты RU2687851C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ОМИЧЕСКИХ КОНТАКТОВ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ 2021
  • Малевская Александра Вячеславовна
  • Ильинская Наталья Дмитриевна
  • Малевский Дмитрий Андреевич
  • Покровский Павел Васильевич
RU2756198C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ С АНТИОТРАЖАЮЩИМ ПОКРЫТИЕМ 2018
  • Андреев Вячеслав Михайлович
  • Малевская Александра Вячеславовна
  • Ильинская Наталья Дмитриевна
  • Задиранов Юрий Михайлович
RU2687501C1
СПОСОБ ИЗГОТОВЛЕНИЯ КАСКАДНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ НА ОСНОВЕ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ Galnp/Galnas/Ge 2013
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Малевская Александра Вячеславовна
  • Задиранов Юрий Михайлович
  • Калюжный Николай Александрович
RU2528277C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ НА УТОНЯЕМОЙ ГЕРМАНИЕВОЙ ПОДЛОЖКЕ 2021
  • Шварц Максим Зиновьевич
  • Малевская Александра Вячеславовна
  • Нахимович Мария Валерьевна
RU2781508C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ 2019
  • Малевская Александра Вячеславовна
  • Ильинская Наталья Дмитриевна
  • Шварц Максим Зиновьевич
  • Емельянов Виктор Михайлович
RU2721161C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЧИПОВ КАСКАДНЫХ ФОТОЭЛЕМЕНТОВ 2012
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Лантратов Владимир Михайлович
  • Малевская Александра Вячеславовна
  • Задиранов Юрий Михайлович
  • Усикова Анна Александровна
RU2493634C1
ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2021
  • Солдатенков Федор Юрьевич
  • Малевская Александра Вячеславовна
RU2756171C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОНТАКТОВ ФОТОПРЕОБРАЗОВАТЕЛЯ 2007
  • Самсоненко Борис Николаевич
  • Разувайло Николай Сергеевич
  • Вельганенко Людмила Вячеславовна
RU2357326C1
СПОСОБ ИЗГОТОВЛЕНИЯ СОЛНЕЧНОГО ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ 2010
  • Андреев Вячеслав Михайлович
  • Солдатенков Федор Юрьевич
  • Сорокина Светлана Валерьевна
  • Хвостиков Владимир Петрович
RU2437186C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНОЙ СТРУКТУРЫ 2022
  • Ильинская Наталья Дмитриевна
  • Пивоварова Антонина Александровна
  • Куницына Екатерина Вадимовна
  • Яковлев Юрий Павлович
RU2783353C1

Иллюстрации к изобретению RU 2 687 851 C1

Реферат патента 2019 года СПОСОБ ИЗГОТОВЛЕНИЯ ОМИЧЕСКИХ КОНТАКТОВ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ

Способ изготовления омических контактов фотоэлектрического преобразователя включает напыление на гетероструктуру A3B5 основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку полученной структуры, формирование фронтального омического контакта через вторую фоторезистивную маску и тыльного омического контакта путем электрохимического осаждения золота в импульсном режиме при частоте импульсного сигнала 30-200 Гц, коэффициенте заполнения 0,2-0,5 сначала при плотности тока 0,002-0,005 мА/мм2 1-2 минуты, а затем при плотности тока 0,02-0,05 мА/мм2 до заданной толщины. Фронтальный омический контакт формируют через вторую фоторезистивную маску с суженным на 0,5-1 мкм рисунком фронтального омического контакта. Изобретение позволяет улучшить фотоэлектрические параметры фотоэлектрического преобразователя за счет уменьшения омических потерь. 4 ил., 3 пр.

Формула изобретения RU 2 687 851 C1

Способ изготовления омических контактов фотоэлектрического преобразователя, включающий напыление на гетероструктуру А3В5 основы фронтального омического контакта через первую фоторезистивную маску с рисунком фронтального омического контакта и основы тыльного омического контакта, термообработку полученной структуры, формирование фронтального омического контакта через вторую фоторезистивную маску и тыльного омического контакта путем электрохимического осаждения золота в импульсном режиме при частоте импульсного сигнала 30-200 Гц, коэффициенте заполнения 0,2-0,5 сначала при плотности тока 0,002-0,005 мА/мм2 1-2 минуты, а затем при плотности тока 0,02-0,05 мА/мм2 до заданной толщины, при этом фронтальный омический контакт формируют через вторую фоторезистивную маску с суженным на 0,5-1 мкм рисунком фронтального омического контакта.

Документы, цитированные в отчете о поиске Патент 2019 года RU2687851C1

СПОСОБ ИЗГОТОВЛЕНИЯ КОНТАКТОВ ФОТОПРЕОБРАЗОВАТЕЛЯ 2007
  • Самсоненко Борис Николаевич
  • Разувайло Николай Сергеевич
  • Вельганенко Людмила Вячеславовна
RU2357326C1
СПОСОБ ПОЛУЧЕНИЯ ЧИПОВ СОЛНЕЧНЫХ ФОТОЭЛЕМЕНТОВ 2010
  • Андреев Вячеслав Михайлович
  • Ильинская Наталья Дмитриевна
  • Калюжный Николай Александрович
  • Лантратов Владимир Михайлович
  • Малевская Александра Вячеславовна
  • Минтаиров Сергей Александрович
RU2419918C1
US 2015054036 А1, 26.02.2015
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОПРЕОБРАЗОВАТЕЛЯ С НАНОСТРУКТУРНЫМ ПРОСВЕТЛЯЮЩИМ ПОКРЫТИЕМ 2017
  • Самсоненко Борис Николаевич
  • Королева Наталья Александровна
  • Рыбин Владимир Викторович
RU2650785C1

RU 2 687 851 C1

Авторы

Малевская Александра Вячеславовна

Даты

2019-05-16Публикация

2018-11-12Подача