Контейнер для оптико-электронных приборов Российский патент 2019 года по МПК G12B9/02 G12B7/00 H05K7/20 G05D23/00 

Описание патента на изобретение RU2689898C1

Изобретение может использоваться в приборостроении для защиты оптико-электронных приборов (ОЭП) от влияния окружающей среды, в том числе от температурных воздействий.

Из уровня техники известен защитный аэродинамический кожух для оптических приборов, описанный в патенте на изобретение RU 2256958 с приоритетом от 22.03.2004 г. Данное техническое решение предназначено для защиты оптических приборов от атмосферных воздействий и содержит закрывающий верхнюю и боковые части оптических приборов кожух с отверстиями для прохождения оптических излучений, в котором установлены экраны с целью аэродинамического торможения вблизи оптических приборов.

Недостаток данного изобретения заключается в том, что его кожух выполнен не герметично, из-за чего оптика подвержена атмосферному воздействию.

Прототипом изобретения является полезная модель RU 173874 с приоритетом от 05.08.2016 г. В данном техническом решении представлен термостатированный корпус, образованный двумя монолитными половинами, в которых имеются канавки с нагревательными элементами и термопарами для контроля температуры.

Недостатком данного изобретения является обеспечение работоспособности оптико-электронных приборов в ограниченном до минус 40°С диапазоне температур. Также в данном техническом решении не раскрыто, каким образом ОЭП осуществляют визирование объектов через монолитную стенку корпуса.

Задачей изобретения является расширение нижней температурной границы эксплуатации до минус 50°С и исключение влияния турбулентности на точность измерений ОЭП.

На фигуре 1 представлена конструкция заявляемого термостатированного герметичного контейнера для оптико-электронных приборов:

1. Основание;

2. Кожух;

3. Иллюминаторы;

4. Термоэлементы;

5. Блок управления с термодатчиком;

6. Коммуникационный блок;

7. Штуцеры.

Конструкция выполнена следующим образом:

Контейнер для оптико-электронных приборов включает основание (1), на которое установлен кожух (2), образуя герметичный контейнер. В стенках кожуха (2) расположены иллюминаторы (3), их количество соответствует числу объектов измерения. Термоэлементы (4) и блок управления с термодатчиком (5) установлены на стенку кожуха (2) с внутренней стороны. Коммуникационный блок (6) и штуцеры (7) встроены в корпус контейнера.

Раскрытие изобретения:

Кожух (2) и основание (1) выполнены так, чтобы при сборке обеспечить полную герметичность конструкции, например, свинчиванием.

Герметичность конструкции необходима для заполнения контейнера инертным газом (неон, гелий, азот и др.). Инертный газ по своим свойствам имеет завершенную устойчивую конфигурацию внешнего электронного уровня и позволяет исключить влияние турбулентности на измерения ОЭП.

Газ для заполнения выбирается из условия обеспечения наименьших оптических искажений. При наличии температурных градиентов наименьшие оптические искажения будут иметь место при использовании газа с минимальным коэффициентом преломления n и максимальным коэффициентом теплопроводности σ. Наилучшими характеристиками обладает гелий (n=1,000035; σ=0,152 Вт/м К), однако в связи с его высокой текучестью, применение нежелательно при длительной эксплуатации.

Оптимальным является использование для наполнения контейнера инертного газа неона (n=1,000067; σ=0,049 Вт/м К). Для сравнения, широко используемый в технических газонаполненных системах азот имеет следующие параметры: n=1,000297; σ=0,026 Вт/м К.

Для обеспечения визирования на объекты измерения ОЭП в контейнере установлены иллюминаторы (3). Количество и расположение иллюминаторов (3) соответствует количеству и направлению объектов измерения.

Термоэлементы (4) установлены на стенку кожуха (2) с внутренней стороны. Использование термоэлементов (4) расширяет нижнюю температурную границу окружающей среды до минус 50°С, при этом ОЭП сохраняет работоспособность без внесения погрешности в измерения, за счет поддержания внутри контейнера оптимальной температуры для ОЭП. Количество термоэлементов (4) зависит от требуемых температурных условий эксплуатации ОЭП.

Поддержание необходимой температуры внутри контейнера осуществляется автоматически блоком управления с термодатчиком (5), который расположен на внутренней стенке кожуха.

Снаружи корпуса контейнера возможна установка термоэлектрических модулей на элементах Пельтье с радиаторами, которые подключаются через коммуникационный блок, что позволяет повысить эффективность пассивного охлаждения контейнера и следственно снизить температуру внутри него. Данное решение может быть использовано в случае ограничения максимальной положительной температуры эксплуатации ОЭП.

Коммуникационный блок (6) предназначен для электропитания системы термостатирования, ОЭП, а также подключения периферийных устройств, например ЭВМ, не нарушая при этом герметичности конструкции.

Штуцеры (7) устанавливаются в корпусе контейнера в количестве двух штук, что необходимо для проведения процедуры продувки контейнера перед его заполнением инертным газом.

На фигуре 2 представлен пример исполнения изобретения:

- в качестве ОЭП показан малогабаритный автоколлиматор на поворотном столе (8);

- в кожухе (2) установлено два иллюминатора (3), для измерения угла 180°±5°;

- контейнер заполнен неоном;

- для обогрева контейнера объемом 0,1 м3 использовано 2 термоэлемента (4) (на фигуре виден один), общей мощностью 50 ватт, помимо этого тепловыделение ОЭП составило 100 Вт;

- процесс измерения, съем показаний и визуализация процесса выполняются посредством ЭВМ, подключенной через коммуникационный блок (5).

ОЭП защищенный такой конструкцией, в практических условиях обеспечил измерение углов с заданной точностью между объектами визирования в диапазоне 180°±5° при температуре окружающей среды минус 50°С, что достигается наличием у контейнера для оптико-электронных приборов основания (1), кожуха (2), на внутренних стенках которого установлены термоэлементы (4) и блок управления (5) с термодатчиком, обеспечивающие термостатирование, в котором, согласно изобретению, основание (1) и кожух (2) образуют герметичный контейнер, который заполняется инертным газом через два штуцера (7), встроенных в корпус контейнера; на уровне оптического элемента оптико-электронного прибора в кожухе установлены иллюминаторы (3), количество и расположение которых соответствует количеству направлений на объекты измерений; в корпус контейнера встроены коммуникационный блок (6). При этом, для снижения положительной температуры внутри контейнера могут использоваться термоэлектрические модули на элементах Пельтье, установленные с внешней стороны корпуса контейнера.

Техническим результатом является обеспечение работоспособности оптико-электронного прибора при температуре до минус 50°С и исключение влияния турбулентности на точность измерений ОЭП.

Похожие патенты RU2689898C1

название год авторы номер документа
КОНТЕЙНЕР ДЛЯ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ 2021
  • Азаров Сергей Александрович
  • Чудаков Юрий Иванович
RU2758149C1
МНОГОКАНАЛЬНЫЙ БЛОК ОПТИКО-ЭЛЕКТРОННОГО ПРЕОБРАЗОВАНИЯ 2014
  • Лавренов Владимир Александрович
  • Разживалов Илья Николаевич
RU2584722C2
БЛОК ИЗМЕРЕНИЯ УГЛОВЫХ СКОРОСТЕЙ С РЕВЕРСИВНОЙ СИСТЕМОЙ ТЕРМОРЕГУЛИРОВАНИЯ 2018
  • Панкратов Владимир Михайлович
  • Голиков Алексей Викторович
  • Ефремов Максим Владимирович
  • Левушкин Денис Владимирович
  • Романов Антон Викторович
RU2675779C1
АВТОМАТИЧЕСКИЙ ГИРОКОМПАС 2003
  • Акулов А.И.
  • Дудко Л.А.
  • Козлов В.В.
  • Коновченко А.А.
  • Мезенцев А.П.
RU2241957C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ БЛОК ПИТАНИЯ 2006
  • Пономарев Владислав Викторович
  • Осипков Валерий Иванович
  • Сорокина Елена Викторовна
  • Ржевская Юлия Михайловна
  • Спорышев Болеслав Викторович
  • Степанова Наталья Владимировна
RU2329569C1
БЛОК СТАБИЛИЗАЦИИ ТЕМПЕРАТУРЫ ИНЕРЦИАЛЬНОЙ НАВИГАЦИОННОЙ СИСТЕМЫ 2014
  • Громов Владимир Вячеславович
  • Зарубин Виталий Анатольевич
  • Липсман Давид Лазорович
  • Мосалёв Сергей Михайлович
  • Рыбкин Игорь Семенович
  • Синицын Денис Игоревич
  • Хитров Владимир Анатольевич
RU2567094C1
Фотоэлектрический компенсирующий пирометр 1991
  • Ткачук Петр Федорович
  • Дроздовский Виктор Васильевич
  • Мосьпан Владислав Александрович
  • Маслов Владимир Елисеевич
SU1787267A3
ИМИТАТОР ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ МОДУЛЬНОГО ТИПА 2022
  • Еремин Борис Георгиевич
RU2813248C2
МОБИЛЬНАЯ РАДИОЛОКАЦИОННО-ОПТИЧЕСКАЯ СИСТЕМА 2023
  • Потапов Валерий Аркадьевич
  • Ковтун Борис Валентинович
RU2817396C1
Способ и устройство для количественного определения содержания восков и воскоподобных веществ в рафинированных растительных маслах 2015
  • Черторийский Алексей Аркадьевич
  • Радаев Олег Александрович
  • Соломин Борис Александрович
  • Низаметдинов Азат Маратович
RU2606850C2

Иллюстрации к изобретению RU 2 689 898 C1

Реферат патента 2019 года Контейнер для оптико-электронных приборов

Изобретение может использоваться в приборостроении для защиты оптико-электронных приборов (ОЭП) от влияния окружающей среды, в том числе от температурных воздействий. Задачей изобретения является расширение нижней температурной границы эксплуатации до минус 50°С и исключение влияния турбулентности на точность измерений ОЭП. Контейнер для оптико-электронных приборов состоит из основания, кожуха, на внутренних стенках которого установлены термоэлементы и блок управления с термодатчиком, обеспечивающие термостатирование, при этом основание и кожух образуют герметичный контейнер, заполненный инертным газом; на уровне оптического элемента оптико-электронного прибора в кожухе установлены иллюминаторы, количество и расположение которых соответствует количеству направлений на объекты измерений; в корпус контейнера встроены коммуникационный блок и два штуцера. При этом для снижения положительной температуры внутри контейнера могут использоваться термоэлектрические модули на элементах Пельтье, установленные с внешней стороны корпуса контейнера. Техническим результатом является обеспечение работоспособности оптико-электронного прибора при температуре до минус 50°С и исключение влияния турбулентности на точность измерений ОЭП. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 689 898 C1

1. Контейнер для оптико-электронных приборов, состоящий из основания, кожуха, на внутренних стенках которого установлены термоэлементы и блок управления с термодатчиком, обеспечивающие термостатирование, отличающийся тем, что основание и кожух образуют герметичный контейнер, заполненный инертным газом; на уровне оптического элемента оптико-электронного прибора в кожухе установлены иллюминаторы, количество и расположение которых соответствует количеству направлений на объекты измерений; в корпус контейнера встроены коммуникационный блок и два штуцера.

2. Контейнер для оптико-электронных приборов по п. 1, отличающийся тем, что для снижения положительной температуры используются модули на элементах Пельтье, установленные с внешней стороны корпуса контейнера.

Документы, цитированные в отчете о поиске Патент 2019 года RU2689898C1

JP 9246741 A, 19.09.1997
US 20160044826 A1, 11.02.2016
RU 173874 U1, 15.09.2017
ЗАЩИТНЫЙ АЭРОДИНАМИЧЕСКИЙ КОЖУХ ДЛЯ ОПТИЧЕСКИХ ПРИБОРОВ 2004
  • Широбакин С.Е.
  • Поляков С.Ю.
  • Зеленюк Ю.И.
  • Огнев И.В.
  • Паршин А.В.
RU2256958C1
CN 204884576 U, 16.12.2015.

RU 2 689 898 C1

Авторы

Межирицкий Ефим Леонидович

Цветков Виктор Иванович

Тимошин Дмитрий Александрович

Апальков Владимир Константинович

Кондауров Тимофей Вячеславович

Таганцев Александр Александрович

Даты

2019-05-29Публикация

2018-08-15Подача