Способ получения потока капель с регулируемым дисперсным составом Российский патент 2019 года по МПК B05B1/34 

Описание патента на изобретение RU2690802C1

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и лакокрасочной промышленности.

Известен способ диспергирования жидкости путем тангенциальной подачи компонентов и последующего распада образующейся вращающейся пленки на капли под действием центробежных сил [1].

Известна центробежная форсунка, камера закручивания в которой выполнена в виде стакана с рядом тангенциальных отверстий на боковой поверхности. Ширина конуса распыла увеличена за счет выполнения сопла в виде двух усеченных конусов, сопрягающихся вершинами [2].

Известна форсунка содержащая корпус, внутреннюю и наружную втулки, образующие с корпусом коаксиальные каналы для создания параллельных потоков жидкости в среднем канале и потоков распылителя во внутреннем и наружном каналах, подключенных к сопловому аппарату, средний кольцевой канал на выходе из форсунки выполнен в виде сопла, имеющего большой ряд равномерно размещенных по окружности отверстий малого размера, расположенных под углом 45° к оси форсунки и имеющих угол наклона 30° в радиальном направлении, обеспечивающих создание струйного вихревого потока топлива в сносящие и облегающие вихревые потоки окислителя, закрученные в противоположном направлении, создаваемые закручивателями потоков: внутренний - через тангенциальный, наружный - через винтовой. [3].

Известен способ изменения угла конусности распыленной струи путем регулирования ширины канала, служащего для тангенциального подвода топлива [4]. Жидкое топливо поступает в камеру завихрения по подводящему каналу, который частично или полностью перекрывается поршнем, приводимым в поступательное движение маховиком. Угол конусности распыла в форсунке может меняться от 3 до 100°.

Наиболее близким по технической сущности к заявляемому изобретению является способ распыливания жидкости центробежными форсунками [5].

Недостатком данного способа является невозможность изменения дисперсности распыла в процессе работы форсунки.

Техническим результатом настоящего изобретения является возможность регулирования дисперсности капель жидкости в факеле распыла форсунки в процессе ее работы.

Технический результат изобретения достигается тем, что разработан способ получения потока капель с регулируемым дисперсным составом, включающий распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло. В процессе распыливания жидкости изменяют суммарную площадь входных тангенциальных каналов путем дискретного перекрытия части каналов. Максимальный диаметр капель, дифференциальную и интегральную функции массового распределения капель по размерам в потоке определяют в соответствии с соотношениями

где Dmax - максимальный диаметр капель, соответствующий ординате 0.95 функции G(D), м;

g(D) - дифференциальная функция массового распределения капель по размерам, м-1;

G(D) - интегральная функция массового распределения капель по размерам;

δ - толщина пленки жидкости в выходном сечении сопла, м;

Oh=Re2/We - число Онезорге;

- число Рейнольдса;

- число Вебера;

D - диаметр капель, м;

ρg - плотность газообразной среды, кг/м3;

u1 - скорость жидкости в выходном сечении сопла форсунки, м/с;

μg - коэффициент динамической вязкости газообразной среды, Па⋅с;

σ - коэффициент поверхностного натяжения жидкости, Н/м.

Скорость и толщину пленки жидкости в выходном сечении сопла определяют расчетом по формулам теории центробежной форсунки Г.Н. Абрамовича для заданных значений расхода жидкости и геометрической характеристики форсунки

где А - геометрическая характеристика форсунки;

R - радиус камеры закручивания, м;

rc - радиус выходного сопла, м;

n - количество не перекрытых входных тангенциальных каналов;

rвх - радиус входного тангенциального канала, м.

Сущность изобретения поясняется схемой форсунки (Фиг. 1), на которой реализован способ регулирования размеров капель в факеле распыла. Форсунка имеет цилиндрическую камеру закручивания 1, выходное сопло 2 и ряд симметрично расположенных по окружности камеры закручивания тангенциальных каналов 3. В стенке камеры закручивания 1 выполнена внутренняя кольцевая полость 4, в которой вдоль оси камеры закручивания 1 перемещается стакан 5. Толщина стенок стакана 5 равна диаметру тангенциальных каналов 3. Внутренняя кольцевая полость 4 при помощи штуцера 7 связана с системой подачи распыливаемой жидкости. Кольцевой уплотнитель 8 служит для герметизации внутренней полости 4. Дно стакана жестко соединено штоком 6 с механизмом осевого перемещения (на Фиг. 1 не показан), а передняя кромка имеет k симметрично расположенных выступов 9 в виде прямоугольных треугольников (Фиг. 2), на наклонной стороне которых выполнено m последовательных прямоугольных уступов 10. Высота уступов 10 равна диаметру тангенциальных каналов, а ширина равна расстоянию между центрами каналов. Количество уступов 10 на выступе 9 связано с количеством тангенциальных каналов n соотношением:

Реализацию способа осуществляют следующим образом.

Распыливаемая жидкость по штуцеру 7 поступает во внутреннюю полость 4 и через тангенциальные каналы 3 в камеру закручивания и выходное сопло 2. При осевом перемещении стакана 5 под действием штока 6, уступы 10 на выступах 9 частично перекрывают тангенциальные каналы 3. При этом изменяется геометрическая характеристика форсунки А и толщина пленки жидкости в выходном сечении сопла 5 и, следовательно, дисперсность капель в факеле распыла.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Дискретное перекрытие части входных тангенциальных каналов n для ввода жидкости в камеру закручивания изменяет геометрическую характеристику форсунки А (4), которая связана с коэффициентом живого сечения форсунки ϕж [6] соотношением

где

Толщина пленки жидкости на выходе из сопла форсунки связана с коэффициентом живого сечения форсунки ϕж соотношением:

График зависимости отношения δ/rc от геометрической характеристики форсунки А, определяемый из уравнений (6-8), приведен на Фиг. 3.

Известно [1-5], что при распыливании жидкости центробежной форсункой размер образующихся капель коррелирует с толщиной пленки жидкости: с увеличением толщины пленки δ размер капель увеличивается.

2. Формула (1) для расчета Dmax, соответствующим ординате 0.95 интегральной функции распределения G(D) (Фиг. 4), получена аппроксимацией результатов многочисленных экспериментальных исследований дисперсности капель в факеле распыла и в двухфазных потоках [1-5,8].

3. Результаты экспериментов [1-5,8] показали, что функция g(D) соответствует распределению Розина - Раммлера. Связь параметров дифференциального и интегрального распределения с Dmax определяется уравнениями (2,3) [9].

Пример реализации

В качестве примера реализации заявляемого способа получения потока капель с регулируемым дисперсным составом, рассмотрим центробежную форсунку (Фиг. 1) со следующими характеристиками: радиус камеры закручивания R=20 мм, радиус выходного сечения сопла rc=2 мм, радиус тангенциальных каналов rвх=0.5 мм, количество каналов n=12. Распыливаемой жидкостью служит вода, подаваемая при перепаде давления на форсунке Δр=6 МПа. Характеристики воды при температуры T=20°C: плотность , коэффициент поверхностного натяжения σ=72.3 мН/м. Рассмотрим работу форсунки в воздушной среде при температуре T=20°C: плотность воздуха ρg=1.205 кг/м3, коэффициент динамической вязкости μg=18.1⋅10-6 Па⋅с.

Выберем стакан с четырьмя выступами (k=4), имеющих m=3 уступов, причем в основании выступов сделаем только 2 симметричных уступа. Таким образом, количество рабочих тангенциальных каналов будет изменяться в последовательности: 12-8-4-2. Высота уступов равна 2rвх=1 мм, а ширина равна 2πR/n=10.5 мм. Толщина стенок стакана равна диаметру тангенциальных каналов.

Проведем расчет значения максимального диаметра капель для каждого режима работы форсунки. По формуле (4) рассчитывают геометрическую характеристику форсунки А. Решая уравнение (6), определяем коэффициент живого сечения ϕж. По формуле (8) вычисляем толщину пленки жидкости на выходе сопла 8.

По формулам теории центробежной форсунки [6] определяют коэффициент расхода сопла:

массовый расход жидкости через сопло

и скорость жидкости на выходе сопла

По известным параметрам жидкости в выходном сечении сопла рассчитываются критерии подобия Re, We, Oh и по формуле (1) определяется значение максимального диаметра капель в факеле распыла Dmax. Соотношения (2) и (3) определяют дифференциальную g(D) и интегральную G(D) функции массового распределения капель по размерам в факеле распыла форсунки для каждого значения максимального диаметра капель Dmax.

Результаты расчета для выбранной геометрии форсунки приведены в таблице 1.

Из таблицы 1 видно, что при изменении количества рабочих тангенциальных каналов ввода жидкости в камеру закручивания с n=12 до n=2 максимальный диаметр капель в факеле распыла уменьшается в 1.9 раза. Нормированная дифференциальная (g(D)/gmax(D)) и интегральная G(D) функции массового распределения капель по размерам, рассчитанные по соотношениям (2) и (3) для режима n=12 (Dmax=680 мкм) и n=2 (Dmax=354 мкм), приведены на Фиг. 4.

Приведенный пример доказывает, что, при реализации предлагаемого способа получения потока капель с регулируемым дисперсным составом, достигается положительный эффект, заключающийся в том, что перекрытие части входных тангенциальных каналов в процессе работы центробежной форсунки позволяет изменять максимальный диаметр капель в факеле распыла. При этом изменяется дисперсный состав капель, который определяется функциями распределения g(D) и G(D).

ЛИТЕРАТУРА

1. Витман Л.А., Кацнельсон Б.Д., Палеев И.И. Распыливание жидкости форсунками. - М. - Л.: ГЭИ, 1962. - 264 с.

2. Патент РФ №2648068 С2 МПК В05В 1/34. Центробежная широкофакельная форсунка/ Стареева М.М.; опубл. 22.03.2018 г.

3. Патент РФ №2172893 С1 МПК F23D 11/12, F23C 11/00, В05В 1/34. Форсунка/ Бедковский Л.В., Жуков В.Г., Левин Е.И., Попсуй В.М.; опубл. 27.08.2001 г.

4. Замазий И.О., Сыркин С.Н. Регулируемая форсунка для распыливания жидкостей // Котлотурбостроение, 1936, №9.

5. Пажи Д.Г., Галустов B.C. Распылители жидкостей. - М.: Химия, 1979. - 216 с.

6. Васильев А.П., Кудрявцев В.М., Кузнецов В.А. и др. Основы теории и расчет жидкостных ракетных двигателей. - М.: Высш. школа, 1983. - 703 с.

7. Раушенбах Б.В., Белый С.А., Беспалов И.В. и др. Физические осневы рабочего процесса в камерах сгорания воздушно-реактивных двигателей. М.: Машиностроение, 1964. - 526 с.

8. Архипов В.А., Золотарев Н.Н., Басалаев С.А., Бондарчук С.С. Дисперсность капель в факеле распыла форсунок // Оптика атмосферы и океана, 2018. Т. 31, №6. - С 489-491.

9. Коузов П.А. Основы анализа дисперсного состава промышленных пылей и измельченных материалов. - Л.: Химия, 1971. - 280 с.

Похожие патенты RU2690802C1

название год авторы номер документа
СПОСОБ ЭФФЕКТИВНОГО РАСПЫЛИВАНИЯ ЖИДКОСТИ ЦЕНТРОБЕЖНО-СТРУЙНОЙ ФОРСУНКОЙ ПРИ РЕГУЛИРОВАНИИ ЕЕ ПРОИЗВОДИТЕЛЬНОСТИ И ЦЕНТРОБЕЖНО-СТРУЙНАЯ ФОРСУНКА 1995
  • Ридер К.Ф.
  • Хохлов Л.К.
RU2122153C1
ЦЕНТРОБЕЖНАЯ ВИХРЕВАЯ ФОРСУНКА ТИПА КОЧСТАР 2012
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2485986C1
Устройство для пневматического распыливания жидкости 1982
  • Мислюк Евгений Васильевич
  • Шевченко Юрий Григорьевич
  • Афанасьев Александр Сергеевич
  • Ефимов Евгений Иванович
SU1076151A1
Устройство для определения пространственного распределения концентрации капель в факеле распыла форсунки 2016
  • Архипов Владимир Афанасьевич
  • Трофимов Вячеслав Федорович
  • Басалаев Сергей Александрович
  • Антонникова Александра Александровна
RU2633648C1
ЦЕНТРОБЕЖНАЯ ВИХРЕВАЯ ФОРСУНКА ТИПА КОЧСТАР 2013
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2532725C1
ЦЕНТРОБЕЖНАЯ ВИХРЕВАЯ ФОРСУНКА ТИПА КОЧСТАР 2014
  • Кочетов Олег Савельевич
RU2557505C1
ЦЕНТРОБЕЖНАЯ ВИХРЕВАЯ ФОРСУНКА КОЧЕТОВА 2013
  • Кочетов Олег Савельевич
  • Стареева Мария Олеговна
  • Стареева Мария Михайловна
RU2533099C1
ЦЕНТРОБЕЖНАЯ ВИХРЕВАЯ ФОРСУНКА КОЧЕТОВА 2016
  • Кочетов Олег Савельевич
RU2616861C1
ЦЕНТРОБЕЖНАЯ ВИХРЕВАЯ ФОРСУНКА 2016
  • Кочетов Олег Савельевич
RU2616859C1
ЦЕНТРОБЕЖНАЯ ВИХРЕВАЯ ФОРСУНКА КОЧЕТОВА 2014
  • Кочетов Олег Савельевич
RU2554331C1

Иллюстрации к изобретению RU 2 690 802 C1

Реферат патента 2019 года Способ получения потока капель с регулируемым дисперсным составом

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло. В процессе распыливания жидкости изменяют суммарную площадь входных тангенциальных каналов путем дискретного перекрытия части каналов, а максимальный диаметр капель Dmax, дифференциальную g(D) и интегральную G(D) функции массового распределения капель по размерам в потоке определяют в соответствии с соотношениями

где δ - толщина пленки жидкости в выходном сечении сопла, м;

Oh - число Онезорге;

Re - число Рейнольдса;

D - диаметр капель жидкости, м.

Значения толщины пленки жидкости, чисел Re и Oh определяют расчетом по формулам теории центробежной форсунки Г.Н. Абрамовича для заданных значений расхода жидкости и геометрической характеристики форсунки. Техническим результатом изобретения является обеспечение возможности регулирования дисперсности капель жидкости в факеле распыла форсунки в процессе ее работы. 4 ил., 1 табл., 1 пр.

Формула изобретения RU 2 690 802 C1

Способ получения потока капель с регулируемым дисперсным составом, включающий распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло, отличающийся тем, что в процессе распыливания жидкости изменяют суммарную площадь входных тангенциальных каналов путем дискретного перекрытия части каналов, а максимальный диаметр капель, дифференциальную и интегральную функции массового распределения капель по размерам в потоке определяют в соответствии с соотношениями

где Dmax - максимальный диаметр капель, соответствующий ординате 0.95 функции G(D), м;

g(D) - дифференциальная функция массового распределения капель по размерам, м-1;

G(D) - интегральная функция массового распределения капель по размерам;

δ - толщина пленки жидкости в выходном сечении сопла, м;

Oh=Re2/We - число Онезорге;

- число Рейнольдса;

- число Вебера;

D - диаметр капель, м;

ρg - плотность газообразной среды, кг/м3;

u1 - скорость жидкости в выходном сечении сопла форсунки, м/с;

μg - коэффициент динамической вязкости газообразной среды, Па⋅с;

σ - коэффициент поверхностного натяжения жидкости, Н/м,

при этом скорость и толщину пленки жидкости в выходном сечении сопла определяют расчетом по формулам теории центробежной форсунки Г.Н. Абрамовича для заданных значений расхода жидкости и геометрической характеристики форсунки

где А - геометрическая характеристика форсунки;

R - радиус камеры закручивания, м;

rc - радиус выходного сопла, м;

n - количество неперекрытых входных тангенциальных каналов;

rвх - радиус входного тангенциального канала, м.

Документы, цитированные в отчете о поиске Патент 2019 года RU2690802C1

ПАЖИ Д.Г., ГАЛУСТОВ В.С
РАСПЫЛИТЕЛИ ЖИДКОСТЕЙ
- МОСКВА, ХИМИЯ, 1979, С
Способ сопряжения брусьев в срубах 1921
  • Муравьев Г.В.
SU33A1
ЦЕНТРОБЕЖНАЯ ШИРОКОФАКЕЛЬНАЯ ФОРСУНКА 2015
  • Стареева Мария Михайловна
RU2648068C2
ФОРСУНКА 2000
  • Белковский Л.В.
  • Жуков В.Г.
  • Левин Е.И.
  • Попсуй В.М.
RU2172893C1
СПОСОБ И УСТРОЙСТВО РАСПЫЛЕНИЯ ЖИДКОСТИ 2000
  • Ольяца Миодраг
  • Хант Эндрю Тайе
  • Риз Брайан Т.
  • Ньюман Джордж А.
RU2228223C2
Способ выделения парафлоу 1948
  • Исагулянц В.И.
SU72391A1
Способ подготовки кромок под сварку 1983
  • Лукьянов Виталий Федорович
  • Людмирский Юрий Георгиевич
  • Демченко Сергей Григорьевич
  • Напрасников Виктор Васильевич
  • Соколов Олег Георгиевич
  • Леонов Валерий Петрович
SU1186442A1

RU 2 690 802 C1

Авторы

Архипов Владимир Афанасьевич

Коноваленко Алексей Иванович

Маслов Евгений Анатольевич

Перфильева Ксения Григорьевна

Золоторёв Николай Николаевич

Даты

2019-06-05Публикация

2018-12-18Подача