Изобретение относится к электротехнике, к конструкциям оптических модулей и кабелей, использующихся в системах связи и передачи информации и, в частности, в судовых кабелях, в кабелях для геофизических исследованиях, кабелях - датчиках физических величин.
Известны конструкции оптических модулей со свободной укладкой оптических волокон (ОВ) внутри полимерной трубки. Они используются в большинстве выпускаемых оптических кабелей (ОК), так называемой модульной конструкции [1].
Эти модули выполняются из полимерных материалов с низким температурным коэффициентом линейного расширения (ТКЛР), например, из полибутилентерефталата или поликарбоната, в котором находятся одно или несколько оптических волокон в тонком лаковом покрытии; внутреннее пространство трубок заполнено внутри модульным маловязким тиксотропным гидрофобным заполнителем. Последний нужен для блокирования протечки воды при низких продольных давлениях.
Модули обычно имеют наружный диаметр от 1,8 до 3 мм. В ОК с полимерными модулями используют один центрально расположенный модуль или конструкцию, в которой несколько модулей скручены вокруг центрального упрочняющего элемента. В этом случае между модулями также обеспечивают герметизацию приблизительно таким же по свойствам межмодульным гидрофобом.
Известны ОК, содержащие гибкую стальную трубку (или гибкий стальной модуль), выполненную из шести стальных проволок, или стренг с внешним диаметром от 1 до 6 мм. В таких модулях внутри броневого покрытия располагаются одно или несколько ОВ с защитным полимерным покрытием. Свободное пространство внутри модуля также заполнено маловязким желеобразным тиксосильным гидрофобным заполнителем [2]. Сверху гибкого стального модуля располагают защитную полимерную оболочку из полиэтилена или других материалов.
К недостаткам этих и других известных ОК следует отнести низкую стойкость к продольному гидростатическому давлению. Это связано с тем, что традиционно используемые в ОК гидрофобные компаунды имеют высокую текучесть во всем диапазоне рабочих температур. При воздействии даже небольшого избыточного давления, незначительно превышающего 1 ати, такой компаунд вытекает из модулей и ОК. Это ограничивает область применения в судовых, морских кабелях, геофизических кабелях, кабелях прокладываемых через водные переходы и пр., где это давление может достигать значительных величин.
Конструкция кабеля [2] является наиболее близкой из числа известных к предлагаемому техническому решению.
Технический результат при использовании разработанного ОК заключается в повышении его стойкости к высоким продольным гидростатическим давлениям (до 10 МПа и более).
Технический результат достигается тем, что в ОК, содержащем, по меньшей мере, одно оптическое волокно с защитным полимерным покрытием, охваченное стальными проволоками или стренгами, и заполнитель, в качестве заполнителя использован герметик, включающий в себя следующие компоненты масс %:
Кабель может быть снабжен наружной оболочкой, под которую также введен указанный герметик.
Сущность изобретения иллюстрируется чертежом, на котором показан оптический кабель в разрезе.
Кабель содержит оптические волокна 1 с защитным полимерным покрытием, внутренний герметик 2, которые размещены в стальной трубке (модуле) 3, образованной стальными проволоками или стренгами, наружный герметик 4 и внешнюю защитную оболочку 5 из полимера.
Для испытаний герметичного кабеля на предприятии ООО «КабельЭлектроСвязь» изготовлены несколько его вариантов с диаметром по броне от 1,2 до 3,0 мм. Кабели выполнены из различных канатов по ГОСТ 3063 из одиночных проволок с временным сопротивлением в пределах 160-220 кг/км2. Число волокон внутри трубки от 1 (при диаметре по броне 1,2 мм) до 8 шт.
Специально разработанный термопластичный герметик, обладал желеобразным состоянием с высокой вязкостью в широком диапазоне температур. Он нагревался и при температуре 100°С, размягчался до состояния вязкой текучести. В этом состоянии он подавался под давлением в оптический металлический модуль, выполненный в виде гибкой стальной трубки, вместе с оптическими волокнами. При охлаждении в процессе производства герметик возвращался в исходное однородное желеобразное состояние, а волокна внутри модуля склеивались.
При наложении защитной оболочки сверху бронировочного покрытия оптического модуля нанесен тонкий слой аналогичного герметика.
Исследования затухания изготовленных многоволоконных кабелей до и после изготовления, а также в процессе изменения температур от минус 50 до плюс 70°С показали отсутствие приращения затухания.
Кабели испытывались по методике ITU-T на стойкость к продольному воздействию давления до 10МПа (100 ати). Образцы выдержали испытания. Протечек воды не наблюдалось.
Таким образом, используемый желеобразный термопластичный высоковязкий герметик, являющийся неразмягчаемым и одновременно нетвердеющим в конструкции ОК со стальными гибкими оптическими модулями обеспечил работоспособность ОК при работе до высоких значений гидростатического давления и неизменность затухания волокон в диапазоне температур от -50 до плюс 70°С. При этом содержание компонентов масс герметика в процентах составило:
Литература:
1. Г. Мальке, П. Гессинг. Волоконно-оптические кабели. Рис 9.21. Перевод с немецкого. Из. Второе дополненное 2001 г. LINGUA-9, Новосибирск.
2. Смирнов Ю.В и др. Патент на полезную модель №56007. Оптический кабель
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛОКОННО-ОПТИЧЕСКОГО МЕТАЛЛИЧЕСКОГО МОДУЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2007 |
|
RU2371794C2 |
ОПТИЧЕСКОЕ ВОЛОКНО В ПЛОТНОМ БУФЕРНОМ ПОКРЫТИИ, ВОЛОКОННО-ОПТИЧЕСКИЕ КАБЕЛИ И СПОСОБЫ НАЛОЖЕНИЯ ПЛОТНОГО БУФЕРНОГО ПОКРЫТИЯ НА ОПТИЧЕСКОЕ ВОЛОКНО (ВАРИАНТЫ) | 2021 |
|
RU2782677C1 |
ОПТИЧЕСКИЙ КАБЕЛЬ СВЯЗИ | 2008 |
|
RU2358344C1 |
ОПТИЧЕСКИЙ КАБЕЛЬ СВЯЗИ | 2008 |
|
RU2363062C1 |
САМОЗАИЛИВАЮЩАЯСЯ КОНСТРУКЦИЯ РЕЧНОГО ОПТИЧЕСКОГО КАБЕЛЯ СВЯЗИ | 2018 |
|
RU2691625C1 |
КОМБИНИРОВАННАЯ КОНСТРУКЦИЯ ОПТИЧЕСКОГО КАБЕЛЯ С СИММЕТРИЧНЫМ ЧЕТЫРЕХПАРНЫМ КАБЕЛЕМ | 2013 |
|
RU2529208C1 |
КОМБИНИРОВАННАЯ КОНСТРУКЦИЯ СИММЕТРИЧНОГО И ОПТИЧЕСКОГО КАБЕЛЯ СВЯЗИ | 2013 |
|
RU2537705C2 |
РЕЧНОЙ ОПТИЧЕСКИЙ КАБЕЛЬ СВЯЗИ | 2017 |
|
RU2673241C1 |
ГИДРОФОБНЫЙ ЗАПОЛНИТЕЛЬ ДЛЯ КАБЕЛЕЙ СВЯЗИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2000 |
|
RU2173900C1 |
Кабельная полимерная армированная оболочка | 2017 |
|
RU2673065C1 |
Изобретение относится к электротехнике, к конструкциям оптических модулей и кабелей, использующихся в системах связи и передачи информации, и в частности в судовых кабелях, в кабелях для геофизических исследований, кабелях-датчиках физических величин. Кабель содержит оптические волокна с защитным полимерным покрытием, помещенные в оптический модуль из стальных проволок или стренг, внутренний термопластичный герметик и такой же наружный герметик, расположенный под внешней защитной оболочкой из полимера. Технический результат - повышение стойкости кабеля к высоким гидростатическим давлениям. 1 з.п. ф-лы, 1 ил.
1. Оптический кабель, содержащий по меньшей мере одно оптическое волокно с защитным полимерным покрытием, охваченное стальными проволоками или стренгами, и заполнитель, отличающийся тем, что в качестве заполнителя использован герметик, включающий в себя следующие компоненты, мас. %:
2. Кабель по п 1, отличающийся также тем, что снабжен наружной оболочкой, под которую введен герметик.
Электрический кабель | 1987 |
|
SU1453450A1 |
ШПОНКА ДЛЯ СОЕДИНЕНИЯ ДЕРЕВЯННЫХ ЧАСТЕЙ | 1928 |
|
SU10309A1 |
0 |
|
SU165636A1 | |
Прибор для наполнения ртутью медицинских и других термометров и для удаления из них воздуха | 1929 |
|
SU13847A1 |
Устройство для сдвиговых испытаний грунта | 1978 |
|
SU777141A1 |
Авторы
Даты
2019-06-11—Публикация
2018-02-20—Подача