УСОВЕРШЕНСТВОВАННАЯ МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА Российский патент 2019 года по МПК H03H7/30 H01P5/107 

Описание патента на изобретение RU2691844C1

Изобретение относится к радиотехнике и может быть использовано для защиты радиоэлектронной аппаратуры (РЭА) от электростатического разряда (ЭСР).

В настоящее время актуальной задачей является защита РЭА от импульсов наносекундного и субнаносекундного диапазонов, которые способны проникать в различные узлы РЭА, минуя электромагнитные экраны устройств. Большую опасность из таких импульсов представляет ЭСР, поскольку его влияние является достаточно распространенной причиной выхода РЭА из строя. Традиционными схемотехническими средствами защиты от такого воздействия являются фильтры, устройства развязки, ограничители помех, разрядные устройства, а конструктивными - защитные экраны и методы повышения однородности экранов, заземление и методы уменьшения импедансов цепей питания. Известно, что включаемые на входе аппаратуры устройства защиты обладают рядом недостатков (малая мощность, недостаточное быстродействие, паразитные параметры), затрудняющих защиту от ЭСР. Эффективная защита в широком диапазоне воздействий требует сложных многоступенчатых устройств. Между тем, наряду с высокими характеристиками, практика требует простоты и дешевизны устройств защиты, поэтому необходима разработка новых устройств защиты от ЭСР.

Наиболее близкой к заявляемому устройству является меандровая микрополосковая линия задержки, защищающая от сверхкоротких импульсов [Суровцев Р.С, Газизов Т.Р., Носов А.В., Заболоцкий A.M., Кукенко СП. Меандровая микрополосковая линия задержки, защищающая от сверхкоротких импульсов. Патент РФ №2607252], состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, и диэлектрической среды.

Недостатком устройства-прототипа является отсутствие у него возможности эффективной защиты от ЭСР.

Рассмотрим типовую форму ЭСР (Фиг. 1) согласно стандарту IEC 61000-4:2003 [2012 Electromagnetic Compatibility (EMC) - Part 4: Testing and measurement techniques -Section 2: Electrostatic discharge immunity test, IEC 61000-4:2003].. Для ясности дальнейшего изложения введем следующие пояснения: первая часть ЭСР - пиковый выброс ЭСР длительностью 4 нс, вторая часть ЭСР - часть ЭСР после пикового выброса длительностью 4 нс.

Заявляется линия задержки, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечиваются равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, отличающаяся тем, что выбором параметров поперечного сечения линии обеспечивается произведение удвоенной длины линии на модуль разности погонных задержек четной и нечетной мод линии не менее длительности пикового выброса электростатического разряда, а также выравнивание амплитуд первых трех импульсов.

Достоинством заявляемого устройства, в отличие от устройства-прототипа, является возможность его использования для защиты от электростатического разряда.

Техническим результатом является разложение пикового выброса ЭСР на последовательность из трех импульсов, а также увеличенное ослабление его амплитуды на выходе линии. Прежде всего, технический результат достигается за счет выбора параметров линии такими, чтобы обеспечить равенство длительности пикового выброса ЭСР произведению удвоенной длины линии и модуля разности погонных задержек четной и нечетной мод линии. За счет этого, пиковый выброс ЭСР разлагается на три основных импульса, каждый из которых приходит к концу линии по окончании предыдущего: импульс ближней перекрестной наводки от фронта пикового выброса ЭСР (первый импульс) и импульсы нечетной и четной мод (второй и третий импульсы). Позже к концу линии будут приходить импульсы разной полярности, вызванные отражениями. Первые три импульса имеют максимальные амплитуды из всех импульсов последовательности. Последнее условие может быть обеспечено за счет сильной торцевой связи между сигнальными проводниками линии, например, за счет уменьшения расстояния между ними, выбором оптимального значения которого можно выровнять и минимизировать амплитуды первых трех импульсов сигнала на выходе линии. Таким образом, защита от ЭСР обеспечивается за счет разложения пикового выброса ЭСР на последовательность импульсов меньшей амплитуды, а за счет выбора оптимальной связи между сигнальными проводниками обеспечивается выравнивание первых трех импульсов на выходе линии. При этом за счет выравнивания амплитуд первых трех импульсов обеспечивается дополнительное ослабление амплитуды выходного сигнала. Приведенные выше качественные оценки достижимости технического результата подтверждаются ниже количественными оценками, полученными с помощью моделирования.

На фиг. 2 приведено поперечное сечение заявляемой линии, со следующими параметрами: w и t - ширина и толщина проводников соответственно, s - расстояние между проводниками, h - толщина диэлектрической подложки, εr - диэлектрическая проницаемость подложки. На фиг. 3 приведена эквивалентная схема заявляемой линии. Она состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников длиной l=2630 мм каждый, находящихся на диэлектрической подложке и соединенных между собой на одном конце. Один из проводников линии соединен с генератором воздействия, представленным на схеме идеальным источником тока I и параллельным сопротивлением R1. Воздействие представляет собой ЭСР с формой тока, соответствующей стандарту IEC 61000-4-2 (Фиг. 1). Его форма напряжения в начале линии представлена на фиг. 4. Другой проводник линии соединен с приемным устройством, представленным на схеме сопротивлением R2.

Значения R1 и R2 для минимизации отражения сигнала на концах проводников линии приняты равными среднему геометрическому волновых сопротивлений четной и нечетной мод линии:

где Z11 и Z12 - соответствующие коэффициенты матрицы погонных импедансов Z.

Параметры поперечного сечения на фиг. 2 выбраны таким образом, чтобы выполнялось условие

где τе и τo - погонные задержки четной и нечетной мод.

Выполнение условия (2) обеспечивает разложение пикового выброса электростатического разряда на импульсы меньшей амплитуды.

Погонные задержки четной и нечетной мод для симметричной, относительно опорного проводника, структуры связанных линий передачи вычисляются как [Малютин Н.Д. Многосвязные полосковые структуры и устройства на их основе / Н.Д. Малютин. - Томск: Изд-во Том. ун-та, 1990. - 164 с.]

где С11 и С12, L11 и L12 - соответствующие элементы матриц (коэффициентов электростатической и электромагнитной индукции) L и С.

Для подтверждения возможности выполнения условия (1) рассмотрим линию, представленную на фиг. 2. Параметры поперечного сечения: w=2450 мкм, t=45 мкм, s=300 мкм, d=12250 мкм, h=2000 мкм, εr=5,4. Вычисленные матрицы:

Значения сопротивлений R1 и R2, вычисленные по (1) с помощью соответствующих коэффициентов матрицы Z, получились равными 50,76 Ом.

По выражению (3) с помощью соответствующих коэффициентов матриц С и L получим τе=6,66 нс/м, τo=5,9 нс/м Произведение модуля разности погонных задержек четной и нечетной мод линии на удвоенную длину линии составляет Таким образом, условие (2) выполняется. Форма сигнала в конце такой линии представлена на фиг. 4. Как видно, пиковый выброс ЭСР в конце меандровой линии представлен последовательностью из трех основных импульсов (импульса перекрестной наводки на ближнем конце и импульсов четной и нечетной мод пикового выброса ЭСР). Амплитуда этих импульсов составляет около 77% от амплитуды ЭСР в начале линии (фиг. 4). Позже к концу линии приходят импульсы разной полярности и меньшей амплитуды, вызванные отражениями.

Следующей рассмотрим линию, поперечное сечение которой также соответствует фиг. 2. Для обеспечения условия (2), а также для минимизация амплитуды на выходе заявляемой линии параметры поперечного сечения выбраны следующими: w=2450 мкм, t=45 мкм, s=1 мкм, d=12250 мкм, h=2000 мкм, εr=5,4. Вычисленные матрицы параметров:

Значения сопротивлений R1 и R2, вычисленные по (1) с помощью соответствующих коэффициентов матрицы Z, получились равными 16,09 Ом.

По выражению (3) с помощью соответствующих коэффициентов матриц С и L получим τе=6,66 нс/м, τo=3,7 нс/м. Произведение модуля разности погонных задержек четной и нечетной мод линии на удвоенную длину линии составляет Таким образом, условие (2) выполняется. Форма сигнала в конце такой линии представлена на фиг. 5. Как видно, пиковый выброс ЭСР в конце меандровой линии также представлен последовательностью из трех основных импульсов. Амплитуды импульсов, определяемых максимальной амплитудой (первый и третий импульсы) практически равны и не превышают 69,3% от амплитуды ЭСР в начале линии (фиг. 5). Таким образом, устройство обеспечивает разложение СКИ с большим ослаблением амплитуды выходного сигнала.

Таким образом, показан технический результат, на достижение которого направлена заявляемая линия - разложение пикового выброса ЭСР на последовательность из трех импульсов, а также увеличенное ослабление его амплитуды на выходе линии.

Похожие патенты RU2691844C1

название год авторы номер документа
МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА 2018
  • Носов Александр Вячеславович
  • Суровцев Роман Сергеевич
  • Газизов Тальгат Рашитович
RU2694741C1
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА 2022
  • Носов Александр Вячеславович
RU2796636C1
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2015
  • Газизов Александр Тальгатович
  • Заболоцкий Александр Михайлович
  • Куксенко Сергей Петрович
RU2606709C1
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ 2019
  • Носов Александр Вячеславович
  • Суровцев Роман Сергеевич
  • Газизов Тальгат Рашитович
RU2742049C1
ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ 2016
  • Газизов Тальгат Рашитович
  • Суровцев Роман Сергеевич
  • Носов Александр Вячеславович
  • Куксенко Сергей Петрович
  • Газизов Тимур Тальгатович
RU2637484C1
УСОВЕРШЕНСТВОВАННАЯ МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2019
  • Носов Александр Вячеславович
  • Суровцев Роман Сергеевич
  • Газизов Тальгат Рашитович
RU2724983C1
УСОВЕРШЕНСТВОВАННАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ 2016
  • Газизов Тальгат Рашитович
  • Суровцев Роман Сергеевич
  • Носов Александр Вячеславович
  • Куксенко Сергей Петрович
  • Газизов Тимур Тальгатович
RU2656834C2
МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ ИЗ ДВУХ ВИТКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2019
  • Носов Александр Вячеславович
  • Суровцев Роман Сергеевич
  • Газизов Тальгат Рашитович
RU2724972C1
МЕАНДРОВАЯ ЛИНИЯ ЗАДЕРЖКИ С ЛИЦЕВОЙ СВЯЗЬЮ ИЗ ДВУХ ВИТКОВ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2019
  • Носов Александр Вячеславович
  • Суровцев Роман Сергеевич
  • Газизов Тальгат Рашитович
RU2724970C1
МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2015
  • Суровцев Роман Сергеевич
  • Газизов Тальгат Рашитович
  • Носов Александр Вячеславович
  • Заболоцкий Александр Михайлович
  • Куксенко Сергей Петрович
RU2607252C1

Иллюстрации к изобретению RU 2 691 844 C1

Реферат патента 2019 года УСОВЕРШЕНСТВОВАННАЯ МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА

Изобретение относится к электротехнике и может быть использовано для защиты радиоэлектронной аппаратуры от электростатического разряда. Линия задержки состоит из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечивается равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, причем выбором параметров поперечного сечения линии обеспечивается произведение удвоенной длины линии на модуль разности погонных задержек четной и нечетной мод линии не менее длительности пикового выброса электростатического разряда, а также выравнивание амплитуд первых трех импульсов. Техническим результатом является разложение пикового выброса ЭСР на последовательность из трех импульсов, а также ослабление его амплитуды на выходе линии. 5 ил.

Формула изобретения RU 2 691 844 C1

Линия задержки, состоящая из одного опорного проводника, двух параллельных ему и друг другу сигнальных проводников, соединенных между собой на одном конце, диэлектрической среды, с выбором параметров линии такими, что обеспечивается равенство среднего геометрического значения волновых сопротивлений четной и нечетной мод волновому сопротивлению тракта, отличающаяся тем, что выбором параметров поперечного сечения линии обеспечивается произведение удвоенной длины линии на модуль разности погонных задержек четной и нечетной мод линии не менее длительности пикового выброса электростатического разряда, а также выравнивание амплитуд первых трех импульсов.

Документы, цитированные в отчете о поиске Патент 2019 года RU2691844C1

МЕАНДРОВАЯ МИКРОПОЛОСКОВАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ 2015
  • Суровцев Роман Сергеевич
  • Газизов Тальгат Рашитович
  • Носов Александр Вячеславович
  • Заболоцкий Александр Михайлович
  • Куксенко Сергей Петрович
RU2607252C1
УСОВЕРШЕНСТВОВАННАЯ ЛИНИЯ ЗАДЕРЖКИ, ЗАЩИЩАЮЩАЯ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ С УВЕЛИЧЕННОЙ ДЛИТЕЛЬНОСТЬЮ 2016
  • Газизов Тальгат Рашитович
  • Суровцев Роман Сергеевич
  • Носов Александр Вячеславович
  • Куксенко Сергей Петрович
  • Газизов Тимур Тальгатович
RU2656834C2
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
US 8217839 B1, 10.07.2012.

RU 2 691 844 C1

Авторы

Носов Александр Вячеславович

Суровцев Роман Сергеевич

Газизов Тальгат Рашитович

Даты

2019-06-18Публикация

2018-06-18Подача