Группа изобретений относится к области авиадвигателестроения, а именно, к способу охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя в составе газоперекачивающего агрегата.
Известен способ охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - лопаток рабочего колеса. Лопатки выполнены пространственной формы с выпукло-вогнутым профилем пера с охлаждаемой полостью. Полость лопатки снабжена стержневыми перемычками (Н.Н. Сиротин, А.С. Новиков, А.Г. Пайкин, А.Н. Сиротин. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва. Наука 2011. стр. 495-522).
Известен способ охлаждения лопатки ротора турбины низкого давления газотурбинного двигателя, включающего вал и рабочее колесо с трактом воздушного охлаждения теплонапряженных элементов - лопаток рабочего колеса. Охлаждаемая лопатка содержит перо, расположенное в направлении потока между передней и задней кромками и ограниченное стенками. Между стенками в полости расположены поперечно направлению потока воздуха стрежневые элементы (RU 2538978 С2, опубл. 10.01.2015)
К недостаткам известных решений относятся повышенная конструктивная сложность турбины, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков лопатки турбины, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.
Задача группы изобретений состоит в повышении эффективности охлаждения лопатки рабочего колеса ротора ТНД стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов для транспортировки газа.
Поставленная задача решается тем, что в способе охлаждения лопатки рабочего колеса ротора турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) в составе газотурбинной установка (ГТУ) газоперекачивающего агрегата (ГПА) согласно изобретению лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД; в полость лопатки охлаждающий воздух поступает через канал тракта воздушного охлаждения лопатки в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины, при этом полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера ∑Fвх.к.л./∑Fвых.к.л.≥0,25, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью выполненных за одно целое с оболочкой пера лопатки стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов, при этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения потока и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемого из выражения
К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40,
где Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки; Hст. и Dст. - соответственно высота и диаметр стержня; Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки; Вш.п. - величина шага; а в диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемого из выражения
К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35,
где Fэ.с.д. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки; Fэ.ш.д. - площадь шага между осями смежных стержней в диагональном ряду решетки; при этом коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены указанные стержни, не менее Когр.ст.=∑Fст./Fфр.п.≥0,062, а удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×103 [м2/м3], причем относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.
Поставленная задача в части лопатки рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА, решается тем, что лопатка согласно изобретению содержит хвостовик и перо с выпукло-вогнутым профилем, при этом полость лопатки выполнена на полную высоту пера лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД, образованного на входе каналом тракта в хвостовике лопатки с возможностью перехода отработанного в полости лопатки воздуха не менее чем через два отверстия в периферийном торце пера на выход в проточную часть турбины, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью выполненных за одно целое с оболочкой пера лопатки стержней из прочного упругого высокотеплопроводного материала типа жаростойкой стали, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов и наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки, кроме того стержни расположены в поперечном ряду с шагом, превышающем диаметр стержня не менее чем в 2,5 раза; то же, с шагом между поперечными рядами, превышающем диаметр стержня не менее чем в три раза, а в диагональных рядах превышающем диаметр стержня решетки не менее чем в четыре раза, при этом в процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают способом по п. 1 формулы.
Технический результат, достигаемый приведенной совокупностью признаков группы изобретений, объединенных единых творческих замыслом, состоит в повышении эффективности охлаждения лопатки рабочего колеса ротора ТНД за счет выполнения в полости лопатки объемной решетки из высокотеплопроводных стрежней в наиболее теплонапряженной средней части длины пера лопатки, достигая тем самым расширения температурного диапазона эксплуатации лопаток и повышения эффективности охлаждения лопаток ТНД в процессе работы двигателя, и как следствие, повышение надежности и ресурса турбины и двигателя в целом.
Сущность группы изобретений поясняется чертежом, где изображена лопатка рабочего колеса ротора ТНД, продольный разрез.
Лопатка рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА содержит хвостовик 1 и перо 2 с выпукло-вогнутым профилем, образованным вогнутой и выпуклой стенками, сопряженными входной и выходной кромками 3 и 4. Внутренняя полость 5 лопатки выполнена на полную высоту пера 2 лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД. Тракт охлаждения лопатки образован на входе каналом 6 в хвостовике 1 с возможностью перехода отработанного в полости 5 лопатки воздуха на выход в проточную часть турбины не менее чем через два отверстия 7 в периферийном торце 8 пера.
Полость 5 пера 2 в средней части наделена совокупностью стержней 9. Стержни 9 выполнены за одно целое с оболочкой пера 2 лопатки. Совокупность стержней 9 выполнена создающей решетку с поперечными и продольными рядами со смещением стержней 9 в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. Стержни 9 выполнены из прочного упругого высокотеплопроводного материала типа жаростойкой стали. Стержни 9 наделены функцией высокотеплопроводной перемычки между спинкой и корытом пера 2 лопатки. Стержни 9 расположены в поперечном ряду с шагом, превышающем диаметр стержня не менее чем в 2,5 раза, с шагом между поперечными рядами, превышающем диаметр стержня не менее чем в три раза, а в диагональных рядах - не менее чем в четыре раза.
В способе охлаждения лопатки рабочего колеса ротора ТДН лопатку охлаждают воздухом, который подают через напорное кольцо (на чертежах не показано) тракта воздушного охлаждения ротора ТНД. В полость 5 лопатки охлаждающий воздух поступает через канал 6 тракта воздушного охлаждения лопатки в хвостовике 1 лопатки, заполняет полость 5 лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки с выходом нагретого воздуха не менее чем через два отверстия 7 в периферийном торце 8 пера 2 в проточную часть турбины. Полость 5 пера 2 лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце 8 лопатки на выходе из полости 5 пера
∑Fвх.к.л./∑Fвых.к.л.≥0,25.
Полость 5 пера 5 в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов.
Стержни 9 создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера 2 лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемого из выражения
К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40, где
Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки;
Hст. и Dст. - соответственно высота и диаметр стержня;
Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки;
Вш.п. - величина шага.
В диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемого из выражения
К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35, где
Fэ.с.д.. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки;
Fэ.ш.д. - условная площадь шага между осями смежных стержней в диагональном ряду решетки.
Коэффициент Когр.ст. суммарной (интегральной) площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней 9 составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены стержни 9, не менее
Когр.ст.=∑Fст./Fфр.п.≥0,062.
Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня 9 к единице его объема Vст. составляет
К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×103 [м2/м3].
Относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней 9 в полости 5 пера 2 лопатки составляет
j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.
В процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают описанным выше способом.
Охлаждают лопатку рабочего колеса ротора ТНД следующим образом.
Лопатку изготавливают литьем по выплавляемым моделям с формообразующими микрополостями под стрежни 9 в средней части полости 5 пера 2 лопатки. По внутренней полости лопатки выполняют пять поперечных и одиннадцать продольных рядов со смещением стержней в смежных поперечных рядах в шахматном порядке на полшага с образованием в решетке перекрестных диагональных рядов. Стержни располагают в поперечном ряду с шагом, превышающем диаметр стержня в 2,8 раза; с шагом между поперечными рядами, превышающем диаметр стержня в 3,4 раза, в диагональных рядах - в 4,2 раза. Стержни 9 выполняют функцию высокотеплопроводной перемычки между стенками пера 2 лопатки.
Во внутреннюю полость 5 лопатки охлаждающий воздух поступает из напорного кольца через канал 6 в хвостовике 1 лопатки, заполняет полость 5 лопатки. Охлаждающий воздух проходит через решетку стержней 9, увеличивая теплосъем с пера 2 лопатки в средней наиболее теплонапряженной части лопатки, и через отверстия 7 в периферийном торце 8 пера 2 нагретый теплосъемом воздух выходит в проточную часть турбины. При этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, принятым К1уд.з.=0,37, в диагональных рядах принятым К2уд.з.=0,31. Коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки составляет Когр.ст.=0,059. Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=0,81×103 [м2/м3]. Относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=0,86×10-1.
Таким образом, за счет выполнения в полости лопатки объемной решетки из высокотеплопроводных стрежней, монолитно соединяющих стенки пера в наиболее теплонапряженной средней части длины пера лопатки, достигают расширения температурного диапазона эксплуатации лопаток, повышения эффективности охлаждения лопаток ротора ТНД в процессе работы двигателя, а также повышение надежности и ресурса турбины и двигателя в целом, используемого в составе ГТУ ГПА и в том числе на компрессорных станциях нефтегазовой и энергетической промышленности.
название | год | авторы | номер документа |
---|---|---|---|
Ротор турбины низкого давления (ТНД) газотурбинного двигателя (варианты), узел соединения вала ротора с диском ТНД, тракт воздушного охлаждения ротора ТНД и аппарат подачи воздуха на охлаждение лопаток ротора ТНД | 2018 |
|
RU2684355C1 |
Способ охлаждения соплового аппарата турбины низкого давления (ТНД) газотурбинного двигателя и сопловый аппарат ТНД, охлаждаемый этим способом, способ охлаждения лопатки соплового аппарата ТНД и лопатка соплового аппарата ТНД, охлаждаемая этим способом | 2018 |
|
RU2691202C1 |
Сопловый аппарат турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) (варианты) и лопатка соплового аппарата ТНД (варианты) | 2018 |
|
RU2691203C1 |
Способ охлаждения соплового аппарата турбины высокого давления (ТВД) газотурбинного двигателя (ГТД) и сопловый аппарат ТВД ГТД (варианты) | 2018 |
|
RU2688052C1 |
Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты) | 2018 |
|
RU2686430C1 |
Способ охлаждения ротора турбины высокого давления (ТВД) газотурбинного двигателя (ГТД), ротор ТВД и лопатка ротора ТВД, охлаждаемые этим способом, узел аппарата закрутки воздуха ротора ТВД | 2018 |
|
RU2684298C1 |
Ротор турбины высокого давления газотурбинного двигателя (варианты) | 2018 |
|
RU2691868C1 |
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД | 2018 |
|
RU2683053C1 |
ОХЛАЖДАЕМАЯ РАБОЧАЯ ЛОПАТКА ГАЗОВОЙ ТУРБИНЫ | 2012 |
|
RU2506429C1 |
Сопловая лопатка турбины газотурбинного двигателя | 2021 |
|
RU2773167C1 |
Группа изобретений относится к области авиадвигателестроения. Лопатка рабочего колеса ротора ТНД включает хвостовик и перо с выпукло-вогнутым профилем. Полость лопатки выполнена на полную высоту пера лопатки Полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью стержней, наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки. Стержни выполнены за одно целое с оболочкой пера лопатки со смещением в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящем к образованию в решетке перекрестных диагональных рядов. В способ охлаждения лопатки рабочего колеса ротора ТНД лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД. В полость лопатки охлаждающий воздух поступает через канал в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины. Полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера. Стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту удельного аэродинамического затенения повторяемой ячейки решетки К1уд.з.≤0,40. В диагональных рядах - пропорционально коэффициенту К2уд.з.≤0,35. Удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=≥0,86×103 [м2/м3]. Изобретение направлено на повышение эффективности охлаждения лопаток ротора ТНД. 2 н.п. ф-лы, 1 илл.
1. Способ охлаждения лопатки рабочего колеса ротора турбины низкого давления (ТНД) газотурбинного двигателя (ГТД) в составе газотурбинной установка (ГТУ) газоперекачивающего агрегата (ГПА), характеризующийся тем, что лопатку охлаждают воздухом, который подают через напорное кольцо ротора ТНД; в полость лопатки охлаждающий воздух поступает через канал тракта воздушного охлаждения лопатки в хвостовике лопатки, заполняет полость лопатки, целенаправленно охлаждая наиболее теплонапряженные участки лопатки, с выходом нагретого воздуха не менее чем через два отверстия в периферийном торце пера в проточную часть турбины, при этом полость лопатки имеет проходную площадь ∑Fвх.к.л. сечения у входа в полость пера, составляющую не менее четверти от проходной площади ∑Fвых.к.л. сечения канала тракта в периферийном торце лопатки на выходе из полости пера ∑Fвх.к.л./∑Fвых.к.л.≥0,25, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделяют совокупностью выполненных за одно целое с оболочкой пера лопатки стержней, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящим к образованию в решетке перекрестных диагональных рядов, при этом стержни создают в потоке охлаждающего воздуха уменьшение проходного сечения потока и увеличение теплосъема с пера лопатки в поперечных рядах пропорционально коэффициенту К1уд.з. удельного аэродинамического затенения повторяемой ячейки решетки, определяемому из выражения
К1уд.з.=Fэ.с.п./Fэ.ш.п.≤0,40,
где Fэ.с.п.=(Hст.×Dст.) - площадь, занимаемая стержнем в поперечном ряду решетки в проекции на условную плоскость, нормальную к интегральному вектору потока воздуха в полости лопатки; Hст. и Dст. - соответственно высота и диаметр стержня; Fэ.ш.п.=(Вш.п.×Нст.) - условная площадь шага между осями смежных стержней в поперечном ряду решетки; Вш.п. - величина шага; а в диагональных рядах - пропорционально коэффициенту К2уд.з. удельного аэродинамического затенения решетки, определяемому из выражения
К2уд.з.=Fэ.с.д./Fэ.ш.д.≤0,35,
где Fэ.с.д. - площадь, занимаемая стержнем в диагональном ряду решетки в проекции на условную плоскость, нормальную к локальному вектору потока воздуха, осредненному в шаговой ячейке диагонального ряда решетки стержней в полости лопатки; Fэ.ш.д. - площадь шага между осями смежных стержней в диагональном ряду решетки; при этом коэффициент Когр.ст. суммарной площади ∑Fст. огражденности теплосъемной поверхностью общего количества стержней составляет относительно площади Fфр.п. внутренней поверхности теплосъема фрагмента полости лопатки, в котором размещены указанные стержни, не менее Когр.ст.=∑Fст./Fфр.п.≥0,062, а удельный коэффициент К3уд.ст. отношения площади Fст. огражденности теплосъемной поверхностью стержня к единице его объема Vст. составляет К3уд.ст.=∑Fст./∑Vст.=Fст./Vст.≥0,86×103 [м2/м3], причем относительный индекс j удельного объемного многорядного аэродинамического затенения охлаждающего потока многорядной решеткой стержней в полости пера лопатки составляет j=∑Vст./ΔVп.л.=(0,73÷1,03)×10-1.
2. Лопатка рабочего колеса ротора ТНД газотурбинного двигателя в составе ГТУ ГПА, характеризующаяся тем, что содержит хвостовик и перо с выпукло-вогнутым профилем, при этом полость лопатки выполнена на полную высоту пера лопатки и открыта для потока воздуха тракта воздушного охлаждения лопатки ротора ТНД, образованного на входе каналом тракта в хвостовике лопатки с возможностью перехода отработанного в полости лопатки воздуха не менее чем через два отверстия в периферийном торце пера на выход в проточную часть турбины, причем полость пера в средней наиболее теплонапряженной части, составляющей не менее трети высоты ΔНр.л. лопатки, наделена совокупностью выполненных за одно целое с оболочкой пера лопатки стержней из прочного упругого высокотеплопроводного материала типа жаростойкой стали, создающих решетку с поперечными и продольными рядами со смещением стержней в смежных поперечных рядах в шахматном порядке не меньше чем на полшага, приводящим к образованию в решетке перекрестных диагональных рядов и наделенных функцией высокотеплопроводной перемычки между стенками пера лопатки, кроме того, стержни расположены в поперечном ряду с шагом, превышающим диаметр стержня не менее чем в 2,5 раза; то же с шагом между поперечными рядами, превышающим диаметр стержня не менее чем в три раза, а в диагональных рядах превышающим диаметр стержня решетки не менее чем в четыре раза, при этом в процессе работы ГТД каждую лопатку рабочего колеса ротора ТНД охлаждают способом по п. 1.
ОХЛАЖДАЕМАЯ ЛОПАТКА ГАЗОВОЙ ТУРБИНЫ | 2010 |
|
RU2538978C2 |
ОХЛАЖДАЕМАЯ ЛОПАТКА ГАЗОВОЙ ТУРБИНЫ | 1995 |
|
RU2101513C1 |
RU 21222123 C1, 20.11.1998 | |||
US 3628880 A1, 21.12.1971 | |||
АППАРАТ ДЛЯ РАЗГРУЗОЧНОЙ НАРУЖНОЙ ФИКСАЦИИ | 1997 |
|
RU2112467C1 |
СПОСОБ ЛЕЧЕНИЯ СТРИКТУРЫ ЛОХАНОЧНО-МОЧЕТОЧНИКОВОГО СЕГМЕНТА | 1998 |
|
RU2159585C2 |
Авторы
Даты
2019-06-18—Публикация
2018-07-05—Подача