Изобретение относится к области электрохимической защиты и может быть использовано для катодной защиты протяженных подземных металлических сооружений, например, трубопроводов от коррозии.
Известна установка катодной защиты (патент РФ на изобретение №1429591, C23F13/02, 1994), содержащая станцию катодной защиты, связанную с анодным заземлением и защищаемым подземным сооружением, блоком измерения поляризационного потенциала. Блок измерения одним входом связан с электродом сравнения, а другим через задающий генератор и коммутатор датчиками тока и с соответствующими датчиками поляризационного потенциала. Кроме того, установка снабжена блоками сравнения и согласующим блоком.
Недостатком известной установки является сложность, невозможность контроля защитного потенциала протяженных металлических сооружений.
Известно устройство для катодной защиты протяженного участка подземного сооружения (патент на полезную модель №120655, С23F13/02, 2006), выбранное в качестве ближайшего аналога. Устройство содержит катодную станцию, выполненную с возможностью подключения к защищаемому сооружению через датчик выходного тока, снабженную датчиком выходного напряжения, анодный заземлитель, связанные между собой каналом связи измерительные пункты, блок контроля. Каждый измерительный пункт, расположенный вблизи катодной станции, включает медно-сульфатный электрод сравнения (ЭНЕС) и измеритель потенциала, соединенный с датчиком потенциала, сооружением и блоком контроля.
Недостатком ближайшего аналога является недостаточная эффективность контроля защитных параметров катодной защиты за счет зависимости измерительных пунктов от автономных источников питания, низкая скорость передачи данных. Наличие приемо-передатчиков на базе GSM-модемов делает канал связи чувствительным к помехам.
Техническим результатом является повышение эффективности контроля электрических параметров катодной защиты.
Технический результат достигается за счет того, что в устройстве для катодной защиты подземных сооружений, содержащем станцию катодной защиты, выполненную с возможностью подключения к защищаемому сооружению, соединенные с ней блок контроля, анодный заземлитель, измерительные блоки с электродом сравнения, канал передачи данных, отличающееся тем, что каждый измерительный блок снабжен оптическим датчиком напряжения, соединенным с электродом сравнения, защищаемым сооружением и каналом передачи данных, при этом канал передачи данных выполнен оптоволоконным.
Технический результат обеспечивается за счет установки в каждом измерительном блоке оптического датчика напряжения, связанного с электродом сравнения, защищаемым объектом и оптоволоконным каналом передачи данных, что повышает эффективность контроля защитных параметров подземного металлического сооружения за счет увеличения объема, повышения скорости и точности передачи данных, поскольку оптоволоконный канал связи обладает широким диапазоном частот, является высокоскоростным и помехоустойчивым. Большой диапазон частот оптоволоконных средств измерения и передачи данных позволяет передавать на блок контроля данные одновременно с множества измерительных блоков с привязкой к географическому положению или номеру измерительного блока в каждой контролируемой точке. Применение оптического датчика напряжения не требует электропитания, что позволяет эффективно контролировать защитные параметры подземного сооружения в любых удаленных точках, что особенно актуально для протяженных подземных сооружений.
На фиг.1 изображена общая схема устройства для катодной защиты подземных металлических сооружений.
Устройство для защиты подземных металлических сооружений содержит станцию катодной защиты (СКЗ) 1, связанную с анодным заземлителем 2 и защищаемым металлическим сооружением 3, блок контроля 4, содержащий компьютер, измерительные блоки 5, связанные между собой оптоволоконным каналом 6. Каждый измерительный блок 5 включает электрод сравнения 7, оптический датчик напряжения 8.
В качестве станции катодной защиты 1 и анодного заземлителя 2 могут быть использованы любые известные устройства. В качестве электрода сравнения 7 предпочтительно использование неполяризующегося медно-сульфатного электрода сравнения в связи с тем, что он имеет фиксированное значение напряжения независимо от вида грунта, в котором он установлен. В качестве оптического датчика напряжения 8 может быть использован оптический датчик напряжения на основе жидких кристаллов. Оптический датчик напряжения 8 принимает оптические сигналы от оптического генератора светового потока, например, источника лазерного излучения небольшой мощности, установленного на блоке контроля 4. Оптический датчик напряжения 8, находясь в электрическом поле, преобразует сигналы, принятые от генератора светового потока, в зависимости от величины защитного потенциала защищаемого сооружения 3, и передает преобразованный сигнал, соответствующий величине защитного потенциала металлической конструкции по оптическому каналу связи на блок контроля 4.
Устройство для катодной защиты подземных металлических конструкций работает следующим образом.
Станцию катодной защиты 1 отрицательным выходом соединяют с защищаемым сооружением 3, например трубопроводом. Положительный выход станции 1 соединяют с анодным заземлителем 2. По цепи «анодный заземлитель – защищаемый трубопровод» начинает протекать защитный ток, благодаря чему на трубопроводе 3 создается защитный потенциал. Измерение поляризационного потенциала на трубопроводе 3 осуществляется с помощью измерительных блоков 5, установленных рядом с трубопроводом 3 по его длине. Каждый измерительный блок 5 включает оптический датчик напряжения 8, связанный с электродом сравнения 7, защищаемым сооружением 3 и оптоволоконным каналом связи 6. Электрод сравнения 7 и оптический датчик напряжения 8 устанавливают около защищаемого объекта 3. Электрод сравнения 7 устанавливают, как правило, под землей, а оптический датчик напряжения 8 размещают на поверхности в корпусе измерительного блока 5. Оптоволоконный канал связи 6 связывает все измерительные блоки 5 и подсоединен к блоку контроля 4. Оптический датчик напряжения 8 не требует подключения автономных источников питания, за счет чего измерительный блок 5 является энергонезависимым. Оптический датчик напряжения 8 измеряет и передает на блок контроля 4 информацию о поляризационном потенциале защищаемого металлического сооружения 3.
Использование оптического канала связи позволяет блоку контроля 4 осуществлять удаленный прием и обработку данных, поступающих одновременно со всех измерительных блоков 5, установленных вдоль защищаемой протяженной конструкции 3, производить сравнение полученных данных и регулирование защитных параметров устройства. Благодаря быстродействию, помехоустойчивости оптоволоконного канала связи 6, точности измерений и энергонезависимости измерительных блоков 5, содержащих оптические датчики напряжения 8, повышается эффективность контроля, измерения и корректировки защитного потенциала в любой удаленной точке подземного сооружения 3. Большой диапазон передаваемых по оптоволоконному каналу частот позволяет передавать на контрольный пункт 4 большие объемы информации. Поэтому, кроме значений защитного потенциала металлического сооружения 3, на контрольный блок 4 передается информация о номере или географическом положении каждого измерительного блока 5. Благодаря чему возможно автоматическое осуществление мониторинга защитного потенциала по всей длине любого протяженного металлического сооружения.
Таким образом, заявляемое изобретение позволяет повысить эффективность контроля и регулирования защитного потенциала металлического подземного сооружения.
Изобретение относится к устройствам для катодной защиты подземных металлических сооружений. Устройство содержит станцию катодной защиты, выполненную с возможностью подключения к защищаемому сооружению, соединенные с ней блок контроля, анодный заземлитель, измерительные блоки с электродом сравнения и канал передачи данных. Каждый измерительный блок снабжен оптическим датчиком напряжения, соединенным с электродом сравнения, защищаемым сооружением и каналом передачи данных. Канал передачи данных выполнен оптоволоконным. В результате повышается эффективность контроля электрических параметров катодной защиты. 1 ил.
Устройство для катодной защиты подземных металлических сооружений, содержащее станцию катодной защиты, выполненную с возможностью подключения к защищаемому сооружению, соединенные с ней блок контроля, анодный заземлитель, измерительные блоки с электродом сравнения и канал передачи данных, отличающееся тем, что каждый измерительный блок снабжен оптическим датчиком напряжения, соединенным с электродом сравнения, защищаемым сооружением и каналом передачи данных, при этом канал передачи данных выполнен оптоволоконным.
Способ моделирования процессов автоматического регулирования | 1956 |
|
SU120655A1 |
Способ акустического обнаружения и локализации свищей в магистральных газовых трубопроводах и контроля состояния изоляторов и разъединителей воздушной линии катодной защиты трубопроводов и система для его осуществления | 2017 |
|
RU2639927C1 |
УСТРОЙСТВО ДЛЯ КАТОДНОЙ ЗАЩИТЫ ПРОТЯЖЕННОГО УЧАСТКА ПОДЗЕМНОГО СООРУЖЕНИЯ | 2012 |
|
RU2506348C2 |
DE 3135639 A1, 15.07.1982. |
Авторы
Даты
2019-06-18—Публикация
2018-09-18—Подача