УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ И ТЕРМОСТАТИРОВАНИЯ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ РАДИОЛОКАЦИОННЫХ СТАНЦИЙ С ИСПОЛЬЗОВАНИЕМ ПЛАВЯЩИХСЯ ТЕПЛОВЫХ АККУМУЛЯТОРОВ С ДОПОЛНИТЕЛЬНЫМ ВОЗДУШНО-ЖИДКОСТНЫМ ТЕПЛООТВОДОМ Российский патент 2019 года по МПК H05K7/20 H01L23/34 

Описание патента на изобретение RU2692123C2

Изобретение относится к системам охлаждения и термостатирования приборов и узлов радиоэлектронной аппаратуры (РЭА) радиолокационных станций (РЛС), установленной на военных гусеничных машинах (ВГМ).

Радиоэлектронная аппаратура (РЭА) радиолокационных станций (РЛС), установленной на военных гусеничных машинах (ВГМ) эксплуатируется в различных условиях климата и местности, которые оказывают существенное влияние на ее работоспособность и надежность.

Оптимальные значения внешних воздействующих факторов (температуры, влажности, давления и т.д.) на работу радиоэлектронной аппаратуры, установленной на военных гусеничных машинах (ВГМ) поддерживаются системами охлаждения и термостатирования.

Известны аналоги систем охлаждения и термостатирования приборов и узлов радиоэлектронной аппаратуры (РЭА) радиолокационных станций (РЛС), установленных на военных гусеничных машинах (ВГМ), предназначены для охлаждения, термостатирования электровакуумных приборов и узлов РЭА РЛС.

Из изученных аналогов в качестве прототипа взяты системы охлаждения (жидкостного и воздушного) и термостатирования приборов и узлов радиоэлектронной аппаратуры (РЭА) радиолокационных станций (РЛС) (см. Изделие 9С32. Техническое описание. Часть 1. Общие сведения. - 9С32.0000 ТО 1982, с. 132-139), содержащие систему жидкостного охлаждения (электроцентробежные насосы, фильтр, сигнализатор давления, обратный клапан, терморегуляторы, воздухо-жидкостные теплообменники, вентиляционные устройства); систему жидкостного термостатирования (электроцентробежный насос, фильтр, сигнализатор давления, нагреватель, терморегуляторы, воздухо-жидкостной теплообменник, вентиляционное устройство, термостат), систему воздушного охлаждения (воздухо-воздушные теплообменники, центробежные вентиляторы и осевой вытяжной вентилятор),

Система жидкостного охлаждения (СЖО) поддерживает температуру жидкости на входе в электровакуумные приборы не выше плюс 85°C. Потребляемая мощность 9,3 кВт.

Система жидкостного термостатирования (СЖТ) поддерживает температуру жидкости на входе в электровакуумные приборы и узлы в пределах плюс 70±15°C. Мощность, потребляемая при форсированном нагреве, составляет 53 кВт, в рабочем режиме - 5,3÷12 кВт.

В СЖО и СЖТ применена охлаждающая жидкость антифриз-65 (тосол). Для СЖО и СЖТ гидроаккумулятор является общим.

СВО поддерживает температуру воздуха в центральном отсеке с установленной РЭА не выше плюс 85°C.

Данные системы охлаждения (жидкостного и воздушного) и термостатирования приборов и узлов радиоэлектронной аппаратуры (РЭА) радиолокационных станций (РЛС) не обеспечивают оптимальные условия для работы РЭА РЛС в особых условиях эксплуатации (высокая температура окружающего воздуха с одновременной высокой относительной влажностью, низкая температура окружающего воздуха).

Высокая температура окружающего воздуха с одновременной высокой относительной влажностью уменьшает диэлектрическую прочность волноводов, высоковольтных соединений, приводит к пробою изоляции и выходу РЭА из строя.

Низкая температура окружающего воздуха способствует изменению параметров радиоэлектронных компонентов (конденсаторов, катушек индуктивности, резисторов и т.д.). Допускается включение высоковольтной аппаратуры из "холодного" состояния (температура жидкости в СЖО t≥0°C). В этом случае снижается выходная мощность предающей системы до 50% и ухудшаются шумовые параметры приемной системы.

Кроме этого данные системы имеют значительную потребляемую мощность, особенно при форсированном нагреве (53 кВт). При этом увеличивается в целом время выполнения поставленной задачи, что является существенным недостатком в системе основных мероприятий обеспечения готовности подразделений.

В настоящее время во взятом прототипе системы СЖО и СЖТ имеют конструктивно предусмотренные устройства, обеспечивающие автоматизированную защиту этой системы от неблагоприятных внешних воздействующих факторов окружающей среды, но имеют существенные недостатки.

В связи с этим возникает необходимость разработки и применения устройства для охлаждения и термостатирования элементов РЭА РЛС с использованием плавящихся тепловых аккумуляторов (ПТА) с дополнительным воздушно-жидкостным теплоотводом.

Для обеспечения постоянной работоспособности РЭА РЛС, установленной на военной гусеничной машине, необходимо создать и поддерживать оптимальный тепловой режим работы РЭА при изменении в определенных пределах внешних температурных воздействий за счет внедрения в систему жидкостного охлаждения и в систему жидкостного термостатирования устройства для охлаждения и термостатирования элементов радиоэлектронной аппаратуры радиолокационных станций с использованием плавящихся тепловых аккумуляторов с дополнительным воздушно-жидкостным теплоотводом.

Целью настоящего технического решения является обеспечение постоянной работоспособности РЭА РЛС в особых условиях за счет разработки устройства для охлаждения и термостатирования элементов РЭА РЛС с использованием плавящихся тепловых аккумуляторов с дополнительным воздушно-жидкостным теплоотводом.

Для достижения поставленной цели предлагается устройство для охлаждения и термостатирования элементов радиоэлектронной аппаратуры радиолокационных станций с использованием плавящихся тепловых аккумуляторов с дополнительным воздушно-жидкостным теплоотводом, содержащее систему жидкостного охлаждения, включающую электроцентробежные насосы, фильтр, сигнализатор давления, обратный клапан, терморегуляторы, воздухо-жидкостные теплообменники, вентиляционные устройства; систему жидкостного термостатирования, включающую электроцентробежный насос, фильтр, сигнализатор давления, нагреватель, терморегуляторы, воздухо-жидкостной теплообменник, вентиляционное устройство, термостат; систему воздушного охлаждения, включающую воздухо-воздушные теплообменники, центробежные вентиляторы и осевой вытяжной вентилятор, отличающееся тем, что дополнительно в модуль с РЭА РЛС установлен теплообменник с плавящимися тепловыми аккумуляторами с воздушно-жидкостным теплоотводом, включающим в себя воздухо-жидкостной теплообменник, центробежный вентилятор, электроцентробежный насос, фильтр, датчик измерения плотности теплоносителя, представленного азотнокислым никелем, трубопроводы, при этом в теплообменнике с плавящимися тепловыми аккумуляторами с воздушно-жидкостным теплоотводом используется охлаждающая жидкость антифриз.

Предлагаемое устройство представлено на фигуре, которое состоит из модуля радиоэлектронной аппаратуры радиолокационной станции (РЭА РЛС) 15, блока обработки информации и выработки команд 1, датчика температуры в модуле РЭА РЛС 14,

При включении накала электровакуумных приборов РЭА РЛС в работу включаются (фигура):

в СЖО насос 35, в СЖТ насос 2, нагреватель 4, пять центробежных вентиляторов СВО 23, 24, 25, 26, 27 и осевой вентилятор 12.

СЖТ работает следующим образом: нагреватель 4 имеет два трубчатых нагревателя - форсированный нагреватель мощностью 6 кВт (6) и рабочий нагреватель мощностью 3 кВт (8). При температуре жидкости менее плюс 56°C включаются оба нагревателя для быстрого нагрева до рабочей температуры термостатированных элементов РЭА РЛС 15.

Для быстрого выхода на режим (достижения заданной температуры) тракт СЖТ имеет два контура: малый и большой. По малому контуру жидкость циркулирует следующим образом: насос 2, фильтр 3, нагреватель 4, корпус с терморегуляторами 5, 7, термостатированные элементы РЭА РЛС 15, термостат 10.

При достижении температуры жидкости плюс 56°C по сигналу терморегулятора 5 отключается, форсированный нагреватель 6. Дальнейший нагрев производится рабочим нагревателем 8. При достижении температуры жидкости плюс 69°C начинает открываться термостат 10 и циркуляция жидкости происходит по малому и большому контуру. Большой контур отличается от малого воздухо-жидкостным теплообменником 11.

При достижении температуры жидкости плюс 84°C термостат 10 полностью открывает большой контур и закрывает малый.

При температуре плюс 85°C выключается рабочий нагреватель 8. При дальнейшей работе температура жидкости перед термостатируемыми элементами РЭА РЛС 15 поддерживается в пределах плюс 70±15°C включением и выключением по сигналу терморегулятора 7, 14 рабочего нагревателя 8, вентиляционного устройства 13 и работой термостата 10. В случае достижения жидкостью температуры 95°C за термостатированными элементами РЭА РЛС 15, или падении давления в гидравлическом тракте ниже 5,0 кГс/см2, по сигналам терморегулятора 23 или сигнализатора давления 37 отключается высоковольтное питание электровакуумных приборов и на передней панели блока обработки информации и выработки команд загорается сигнальная лампа «ОБЩИЙ ОТКАЗ».

Системы жидкостного охлаждения СЖО-I и СЖО-II производят охлаждение электровакуумных приборов РЭА РЛС 15. Она работает совместно с системами воздушного охлаждения и жидкостного термостатирования.

При работе СЖО жидкость циркулирует по замкнутому контуру: насосы 13, обратный клапан 14, фильтр 15, сигнализатор давления 37, корпус с терморегуляторами 7, 14, 29, 30, 32, 33, 34, узлы и блоки РЭА РЛС 15, теплообменники 28, 31. Жидкость, проходя через охлаждаемые элементы, нагревается, но пока температура жидкости не достигла плюс 75°C, вентиляционные устройства 26, 27 не работают, что необходимо для того чтобы СЖТ быстро произвела прогрев термостатированных элементов до рабочей температуры. При достижении температуры жидкости плюс 75°C по сигналу терморегуляторов 29 и 32 в теплообменниках 28, 31 включаются по одному вентиляционному устройству 26, 27 (СЖО-I, СЖО-II). Если температура продолжает расти, то при температуре плюс 84°C по сигналу терморегулятора 34 включаются еще три вентиляционных устройства 23, 24, 25 (СЖО-II).

Выключение вентиляционных устройств СЖО-I и СЖО-II производится при понижении температуры жидкости до плюс 60°C по сигналу терморегулятора 30.

В случае, если температура жидкости на выходе из охлаждаемых узлов и блоков РЭА РЛС достигнет плюс 95°C по сигналам термодатчиков 14, 22, 25, или сигнализатора давления 37 отключится анодное питание электровакуумных приборов и на передней панели блока обработки информации и выработки команд загорится сигнальная пампа «ОБЩИЙ ОТКАЗ».

При работе СВО центробежные вентиляторы 23, 24, 25, 26, 27 создают циркуляцию воздуха по замкнутому контуру: вентиляторы, узлы и блоки РЭА РЛС, воздухо-воздушные теплообменники 28, 31 (горячий контур).

Для охлаждения наиболее важных узлов РЭА РЛС используется автономный вентилятор 13 (горячий контур). Осевой вентилятор 12, забирая наружный воздух, прогоняет его через теплообменники 11 и выбрасывает в атмосферу - холодный контур, обеспечивая тем самым поддержание температуры воздуха в отсеках с РЭА РЛС не выше 85°C. При неисправности вентиляторов или их аэроблокировок на панели блока обработки информации и выработки команд загорается сигнальная лампа «ОТКАЗ». При повышении температуры воздуха в отсеках с РЭА РЛС выше 85°, по сигналу термодатчика отключается высоковольтное напряжение и на передней панели блока обработки информации и выработки команд загорается сигнальная лампа «ОБЩИЙ ОТКАЗ».

Кроме этого, наиболее важные узлы РЭА РЛС термостатируются плавящимися тепловыми аккумуляторами (ПТА).

Предлагается использовать принцип совместного использования плавящихся тепловых аккумуляторов и жидкостной системы теплоотвода из рабочей зоны ПТА. В ПТА используются обратимые эндотермические процессы плавления рабочих веществ (азотнокислый никель), сопровождающееся дополнительным поглощением тепла при фазовых превращениях этих веществ из твердого в жидкое состояние после достижения ими температуры фазового перехода (70±15°C). Предлагаемое устройство представляет собой тонкостенную металлическую емкость. Для уменьшения теплового сопротивления плавящегося вещества внутренняя емкость ПТА выполняется в виде сотовой панели. Емкость и соты выполняются из металлического корпуса с высокой теплопроводностью. Для недопущения полного расплавления плавящегося вещества по сигналу датчика измерения плотности 19 включается воздушный вентилятор 18 и электроцентробежный насос 17, который через фильтр 16 и трубопроводы, проходящие через ПТА, прогоняет охлаждающую жидкость через теплообменник 21, осуществляя жидкостной теплоотвод из рабочей зоны ПТА, поддерживая при этом оптимальные значения температуры в модуле РЭА РЛС 15.

В результате применения устройства для охлаждения и термостатирования элементов РЭА РЛС с использованием плавящихся тепловых аккумуляторов (ПТА) с дополнительным воздушно-жидкостным теплоотводом позволит более длительное нахождение РЛС в работоспособном состоянии при высоких температурах окружающего воздуха и сократить время выхода на рабочий тепловой режим аппаратуры РЛС в условиях низких температур, а также сократить затраты электрической энергии.

Таким образом, использование данного устройства будет обеспечивать поддержание параметров и характеристик РЭА РЛС в пределах, указанных в технических условиях на нее.

Похожие патенты RU2692123C2

название год авторы номер документа
Устройство для обеспечения работоспособности радиоэлектронной аппаратуры радиолокационных станций в условиях низких температур 2020
  • Трофимов Игорь Анатольевич
  • Прохоркин Александр Геннадьевич
  • Ильков Виталий Васильевич
RU2765652C1
Устройство для обеспечения работоспособности личного состава обитаемого отделения военной гусеничной машины в условиях низких температур 2021
  • Трофимов Игорь Анатольевич
  • Прохоркин Александр Геннадьевич
RU2769407C1
СИСТЕМА ОБЕСПЕЧЕНИЯ ТЕПЛОВЫХ РЕЖИМОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2005
  • Москаленко Сергей Валерьевич
  • Фиделин Андрей Георгиевич
  • Фиделина Вера Алексеевна
  • Григорьев Дмитрий Валентинович
RU2307295C2
УСТРОЙСТВО ДЛЯ ОТВОДА ТЕПЛОТЫ ОТ ЭЛЕМЕНТОВ РЭА, РАБОТАЮЩИХ В РЕЖИМЕ ПОВТОРНО-КРАТКОВРЕМЕННЫХ ТЕПЛОВЫДЕЛЕНИЙ 2016
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Евдулов Денис Викторович
  • Казумов Ревшан Шихович
RU2634927C1
Термоэлектрическое устройство для отвода теплоты от элементов РЭА 2023
  • Иванченко Александр Александрович
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
RU2797034C1
Термоэлектрическое устройство для отвода теплоты от элементов РЭА 2023
  • Евдулов Олег Викторович
  • Евдулов Денис Викторович
  • Иванченко Александр Александрович
RU2796624C1
УСТРОЙСТВО ДЛЯ ТЕРМОСТАБИЛИЗАЦИИ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ С ВЫСОКИМИ ТЕПЛОВЫДЕЛЕНИЯМИ 2000
  • Евдулов О.В.
  • Исмаилов Т.А.
  • Юсуфов Ш.А.
  • Аминов Г.И.
RU2180161C1
Термоэлектрическое устройство для отвода теплоты от элементов РЭА 2023
  • Евдулов Олег Викторович
  • Евдулов Денис Викторович
  • Иванченко Александр Александрович
RU2796627C1
СИСТЕМА ЖИДКОСТНОГО ОХЛАЖДЕНИЯ 1991
  • Базелев Б.П.
  • Букраба М.А.
  • Грабой Л.П.
  • Денисенко Е.Г.
  • Дябло В.В.
  • Ефремов В.И.
  • Кожелупенко Ю.Д.
  • Шепеленко А.Н.
RU2008580C1
Термоэлектрическое устройство для отвода теплоты от элементов РЭА 2023
  • Евдулов Олег Викторович
  • Хазамова Мадина Абдулаевна
  • Иванченко Александр Александрович
RU2799496C1

Иллюстрации к изобретению RU 2 692 123 C2

Реферат патента 2019 года УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ И ТЕРМОСТАТИРОВАНИЯ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ РАДИОЛОКАЦИОННЫХ СТАНЦИЙ С ИСПОЛЬЗОВАНИЕМ ПЛАВЯЩИХСЯ ТЕПЛОВЫХ АККУМУЛЯТОРОВ С ДОПОЛНИТЕЛЬНЫМ ВОЗДУШНО-ЖИДКОСТНЫМ ТЕПЛООТВОДОМ

Изобретение относится к системам охлаждения и термостатирования приборов и узлов радиоэлектронной аппаратуры (РЭА) радиолокационных станций (РЛС), установленной на военных гусеничных машинах (ВГМ). Предлагается устройство для охлаждения и термостатирования элементов радиоэлектронной аппаратуры радиолокационных станций с использованием плавящихся тепловых аккумуляторов с дополнительным воздушно-жидкостным теплоотводом, содержащее систему жидкостного охлаждения, включающую электроцентробежные насосы, фильтр, сигнализатор давления, обратный клапан, терморегуляторы, воздухо-жидкостные теплообменники, вентиляционные устройства; систему жидкостного термостатирования, включающую электроцентробежный насос, фильтр, сигнализатор давления, нагреватель, терморегуляторы, воздухо-жидкостной теплообменник, вентиляционное устройство, термостат; систему воздушного охлаждения, включающую воздухо-воздушные теплообменники, центробежные вентиляторы и осевой вытяжной вентилятор. Дополнительно в модуль с РЭА РЛС установлен теплообменник с плавящимися тепловыми аккумуляторами с воздушно-жидкостным теплоотводом, включающим в себя воздухо-жидкостной теплообменник, центробежный вентилятор, электроцентробежный насос, фильтр, датчик измерения плотности теплоносителя, представленного азотнокислым никелем, трубопроводы, при этом в теплообменнике с плавящимися тепловыми аккумуляторами с воздушно-жидкостным теплоотводом используется охлаждающая жидкость антифриз. Технический результат - обеспечение постоянной работоспособности РЭА РЛС в особых условиях за счет разработки устройства для охлаждения и термостатирования элементов РЭА РЛС с использованием плавящихся тепловых аккумуляторов с дополнительным воздушно-жидкостным теплоотводом. 1 ил.

Формула изобретения RU 2 692 123 C2

Устройство для охлаждения и термостатирования элементов радиоэлектронной аппаратуры радиолокационных станций с использованием плавящихся тепловых аккумуляторов с дополнительным воздушно-жидкостным теплоотводом, содержащее систему жидкостного охлаждения, включающую электроцентробежные насосы, фильтр, сигнализатор давления, обратный клапан, терморегуляторы, воздухо-жидкостные теплообменники, вентиляционные устройства; систему жидкостного термостатирования, включающую электроцентробежный насос, фильтр, сигнализатор давления, нагреватель, терморегуляторы, воздухо-жидкостной теплообменник, вентиляционное устройство, термостат; систему воздушного охлаждения, включающую воздухо-воздушные теплообменники, центробежные вентиляторы и осевой вытяжной вентилятор, отличающееся тем, что дополнительно в модуль с РЭА РЛС установлен теплообменник с плавящимися тепловыми аккумуляторами с воздушно-жидкостным теплоотводом, включающим в себя воздухо-жидкостной теплообменник, центробежный вентилятор, электроцентробежный насос, фильтр, датчик измерения плотности теплоносителя, представленного азотнокислым никелем, трубопроводы, при этом в теплообменнике с плавящимися тепловыми аккумуляторами с воздушно-жидкостным теплоотводом используется охлаждающая жидкость антифриз.

Документы, цитированные в отчете о поиске Патент 2019 года RU2692123C2

ИСМАИЛОВ Т.Г., ЕВДУЛОВ О.В
и др., "Устройства для охлаждения элементов радиоэлектронной аппаратуры на базе плавящихся веществ с дополнительным воздушным теплосъемом", Вестник Дагестанского государственного технического университета
Технические науки, номер 27, 2012 г., С.21-25
УСТРОЙСТВО ДЛЯ ОТВОДА ТЕПЛА ОТ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ С ПОВТОРНО-КРАТКОВРЕМЕННЫМИ ТЕПЛОВЫДЕЛЕНИЯМИ 2008
  • Исмаилов Тагир Абдурашидович
  • Евдулов Олег Викторович
  • Махмудова Марьям Магомедовна
RU2351105C1
УСТРОЙСТВО ТЕРМОСТАБИЛИЗАЦИИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2009
  • Чеботарев Виктор Евдокимович
  • Звонарь Василий Дмитриевич
  • Косенко Виктор Евгеньевич
  • Бакиров Митхат Талгатович
  • Деревянко Валерий Александрович
  • Макуха Александр Васильевич
  • Васильев Евгений Николаевич
RU2408919C1
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ТЕРМОСТАБИЛИЗАЦИИ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ, РАБОТАЮЩИХ ПРИ ЦИКЛИЧЕСКИХ ТЕПЛОВЫХ ВОЗДЕЙСТВИЯХ 2002
  • Исмаилов Т.А.
  • Евдулов О.В.
  • Аминов Г.И.
  • Юсуфов Ш.А.
RU2236100C2
ОХЛАДИТЕЛЬ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2001
  • Исмаилов Т.А.
  • Евдулов О.В.
  • Абдурахманова М.М.
RU2214701C2
УСТРОЙСТВО ТЕРМОСТАБИЛИЗАЦИИ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2002
  • Деревянко В.А.
  • Косенко В.Е.
  • Васильев Е.Н.
  • Звонарь В.Д.
  • Макуха А.В.
  • Чеботарёв В.Е.
  • Бакиров М.Т.
RU2240606C2
ОХЛАДИТЕЛЬ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2006
  • Исмаилов Тагир Абдурашидович
  • Махмудова Марьям Магомедовна
RU2335102C1
US 8392035 B2, 05.03.2013.

RU 2 692 123 C2

Авторы

Москалёв Владимир Семёнович

Трофимов Игорь Анатольевич

Даты

2019-06-21Публикация

2016-11-18Подача