Ветроэнергогенерирующая установка Российский патент 2019 года по МПК F03D3/04 H02S10/12 

Описание патента на изобретение RU2693554C1

Изобретение относится к области ветроэнергетики и может быть использовано для преобразования кинетической энергии ветрового потока в механическую энергию движения ротора и в электрическую.

Энергия естественного ветрового потока не постоянна. Ослабление ветрового потока является причиной того, что конструкторы ветроэнергетических установок выбирают большие размеры основных деталей.

Для уменьшения размеров установки необходимо увеличение скорости ветра, например до 10-12 м/сек. Указанная скорость ветра бывает не всегда. Следовательно, требуются новые технические решения в этой области техники.

В настоящее время известен достаточно широкий диапазон ветроэнергетических установок. Ветроэнергетическая установка – это комплекс взаимосвязанного оборудования и сооружений, предназначенных для преобразования энергии ветра в механическую энергию вращения ротора. Ветроэнергетические установки классифицируют по мощности: малой, средней, большой мощности. Мощность ветроэнергетических установок повышается с использованием концентраторов (усилителей) воздушного потока. Использование концентраторов позволяет сконцентрировать направление ветрового потока в области сопротивления ротора в направлении его вращения.

Известен вихревой концентратор воздушного потока (патент №2655422, заявка №2017121658, дата приоритета 28.05.2017, дата публикации 28.05.2018г. бюл.16). В известном техническом решении используются закрученные ветронаправляющие элементы. Концентратор используется для создания вихревого потока для осевого вентилятора, и фактически использование такой конструкции ограничено. При использовании известного концентратора может возникать встречное воздушное сопротивление.

Основным недостатком при использовании известных технических решений является образование «мертвых зон воздушного потока внутри концентратора» (т.е. отрицательная работа ветра) при работе использовании известных концентраторов, что является причиной снижения мощности известных установок.

Известен ротор ветровой электрогенерирующей установки парусного типа с тремя или более лопастями, установленный внутри концентратора потока, разделяющего поток на активную зону и мертвую зону (патент №2610875, заявка №2015119085, дата публикации 17.02.2017г., бюл.№5, дата приоритета 21.05.2015г.). Известный ротор ветровой электрогенерирующей установки, оснащенный тремя или более лопастями парусного типа, каждая из которых представляет собой часть цилиндра, ограниченную углом менее 180°, с вершиной в центре вертикальной оси цилиндра, размещенными на консолях с общим для всех лопастей постоянным углом атаки, составляющим от 35° до 60° между хордой сегмента цилиндра лопасти и консолью, на которой она установлена, в точке их пересечения, устанавливается внутри концентратора воздушного потока, рабочая область которого разделяется на активную зону и мертвую зону.

Недостатком известного технического решения является то, что не достаточно используется энергия ветра, имеются потери энергии.

Известна ветроэнергетическая установка (патент №2390654, заявка №2009115533, дата приоритета 24.04.2009, дата публикации 27.05.2010). Известная ветроэнергетическая установка содержит по меньшей мере один роторный ветрогенератор с вертикальной осью вращения, выполненный в виде модуля с возможностью вертикальной сборки модулей, включающий прикрепленные к несущему цилиндру лопасти ротора ветротурбины, размещенного внутри выполненной соосно с ротором ветротурбины неподвижной системы ветронаправляющих экранов, выполненной в виде вертикальных отклоняющих пластин. Ветронаправляющие экраны выполнены с возможностью изменения площади каждой из вертикальных отклоняющих пластин за счет телескопического перемещения их подвижного сектора, лопасти ротора ветротурбины, выполненные плоскими, снабжены завихрителями, выполненными в виде цилиндрически изогнутых полосок, а размещение лопастей ротора ветротурбины относительно несущего цилиндра выполнено с образованием вдоль их основания между ними и несущим цилиндром щелевого диффузора.

Недостатком известного технического решения является то, что завихрения, показанные на фиг.4, не улучшают работу установки в целом, а ухудшают. Авторы технически неверно делают вывод о достижении заявленного технического результата. Лопасти ротора и вертикальные отклоняющие пластины находятся на одной прямой линии. При этой конструкции завихрения снижают силу ветра, создавая область разнонаправленного потока, который даже при сильном ветре будет тормозить вращение ротора. И кроме того, с увеличением скорости ветра завихрения будут увеличиваться, что может серьезно тормозить работу всей установки. Не создано эффективное управление воздушным потоком.

Техническим результатом предлагаемого изобретения является повышение эффективности работы ветроэнергогенерирующей установки, улучшение ее технических характеристик за счет:

- полного использования энергии ветрового потока концентратором;

- снижения потерь ветрового потока в концентраторе и роторе при обтекании им гладких поверхностей направляющих концентратора и лопастей ротора (без выступов и резких изгибов);

- максимального использования кинетической энергии ускоренного воздушного потока.

Предлагается первый вариант выполнения ветроэнергогенерирующей установки включающей ротор с вертикальной осью вращения и вогнутыми лопастями и концентратор цилиндрической формы, состоящий из вогнутых направляющих, зафиксированные на стойках.

Его отличием от известных технических решений является то, что ротор установлен на нижней опорной площадке через магнитный подшипник, а вогнутые лопасти ротора и вогнутые направляющие концентратора обращены друг к другу вогнутыми поверхностями, и вогнутые направляющие концентратора с радиусом изгиба R, закреплены одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора, при этом угол между хордой направляющей и наружным диаметром концентратора находится в пределах от 25° до 45°, а радиус изгиба направляющей вычисляется по формуле:

- R2, где

R- радиус изгиба направляющей,

R1- внешний радиус концентратора,

R2-внутренний радиус концентратора.

Отличием является и то, что направляющие выполнены из листовой стали.

По второму варианту предлагается ветроэнергогенерирующая установка включающая ротор с вертикальной осью вращения и концентратор цилиндрической формы, состоящий из направляющих, зафиксированные на стойках.

Отличием второго варианта от известных технических решений и от первого варианта является то, что концентратор состоит из фотоэлектрических панелей, установленных на рамки и закрепленных одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора и образующих при этом угол между диаметром концентратора и плоскостью фотоэлектрической панели в диапазоне от 20 до 45.

При использовании предлагаемого технического решения по первому и второму вариантам создается плоскостной поток воздуха.

Сущность предлагаемого изобретения показана на фиг.1, фиг.2, фиг.3, где на фиг.1 показан первый вариант исполнения предлагаемого технического решения, на фиг.2 его вид сбоку, на фиг.3 второй вариант исполнения предлагаемого технического решения.

На фигурах наружный опорный круг концентратора обозначен 1, направляющая обозначена 2, внутренний опорный круг концентратора обозначен 3, лопасти ротора обозначены 4, консоль ротора 5, ось ротора 6, стойка опоры установки 7, магнитный подшипник 8, электрогенератор 9. Наружный диаметр концентратора обозначен D, внутренний диаметр концентратора обозначен d, высота направляющей обозначена Н, R1-внешний радиус концентратора, R2 - внутренний радиус концентратора.

По первому и второму вариантам предлагается техническое решение ветроэнергогенерирующей установки конфузорного типа.

Изобретение по первому варианту (показаны на фиг.1 и фиг.2) осуществляется следующим образом. Направляющие 2 выполнены вогнутыми с радиусам изгиба. Радиус изгиба направляющих отличается в зависимости от мощности установки и ее габаритов. При этом радиус изгиба направляющей вычисляется по формуле:

R=R1-R2 где

R- радиус изгиба направляющей (не обозначен),

R1- внешний радиус концентратора,

R2-внутренний радиус концентратора.

Формула расчета радиуса изгиба направляющей подтверждена на практике.

Направляющие 2 установлены строго вертикально, создается поток строго направленного действия в направлении вращения лопастей ротора 4, исключается встречное воздушное сопротивление ветра на движущиеся лопасти ротора 4. Исключается турбулизация воздушного потока, т.е. хаотическое возмущение его скорости по величине и направлению. Улучшаются энергетические характеристики установки за счет снижения потерь энергии ветрового потока в концентраторе.

Ротор установлен на нижней опорной площадке через магнитный подшипник (на фиг. не показано). Это техническое решение существенно снижает силу трения при вращении ротора. Следовательно, повышается эффективность работы всей установки, снижаются потери энергии.

При этом материал, из которого изготовлены направляющие (по первому варианту) может быть: сталь, текстолит, поликарбонат, любые новые полимерные и синтетические материалы, допустимые в использовании предлагаемого технического решения. Крепление деталей концентратора осуществляется при помощи разъемных болтовых соединений, расчетно допустимых при создаваемых внутренних напряжениях.

Ветер характеризуется скоростью, направлением и силой. Для того, чтобы эффективно использовать большую часть ветрового потока предлагаемое техническое решение содержит конструкцию направляющих в виде вогнутых гладких, полированных поверхностей. Гладкая поверхность (без изгибов и встроенных элементов) снижает силу трения воздушного потока (воздушный поток содержит пылевые частицы разной дисперсности) и усиливается концентрация силы ветра в области максимального прогиба направляющей 2, в области максимального прогиба струя воздуха, скользя изменяет свое направление, ускоряясь при этом. Т.е. снижается торможение воздушного потока. Повышается эффективность работы ветроэнергогенерирующей установки.

Кроме того, направляющие по первому варианту закреплены одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора, при этом угол между хордой направляющей и наружным диаметром концентратора в пределах от 25 до 45. Расположение направляющих под углом в диапазоне от 25 до 45 позволяет принимать и направлять воздушный поток таким образом, что исключается образование мертвых зон, возникновение струй воздуха с отрицательной работой торможения лопастей ротора. Указанный диапазон расположения направляющих подобран экспериментальным путем.

По второму варианту изобретения концентратор цилиндрической формы состоит из направляющих 2 выполненных из фотоэлектрических панелей и закрепленных одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора и образующих при этом угол между диаметром концентратора и плоскостью фотоэлектрической панели в диапазоне от 20 до 45.

Использование фотоэлектрических панелей, предпочтительно из кремния, т.к. на сегодня это наиболее освоенный в промышленном производстве вид фотоэлектрических панелей. Но в предлагаемом техническом решении возможны и другие варианты исполнения фотоэлектрических панелей, из других химических элементов. В данном варианте за счет использования не только ветровой, но и солнечной энергии увеличивается выработка энергии, достаточной на подзарядку аккумуляторов, что позволяет повысить эффективность установки, обеспечить ее бесперебойную работу. Восполняется недостаток электрической энергии в период слабого ветра или в период штиля. Направление и сила ветра величины не постоянные.

Расположение фотоэлектрических панелей (направляющих) под углом α в диапазоне от 20 до 45 позволяет наиболее эффективно улавливать ветровой поток в большем объеме и корректировать и концентрировать направление ветра на лопасти ротора.

Фотоэлектрические панели 2 устанавливаются на рамки панелей, например, навешиванием, либо другим допустимым способом. При этом рамки панелей могут быть выполнены в виде каркасной рамки. Рамки панелей для навешивания фотоэлектрические панели могут быть изготовлены из стали, стеклотекстолита и другого прочного материала, допустимого к использованию в данной конструкции. Угол падения солнечных лучей на плоскости панели может варьироваться от 0 до 90, от чего и зависит выработка дополнительной энергии.

Предлагаемое техническое решение исключает возникновение зоны противодействия вращению ротора за счет исключения завихрений воздуха. Не возникают встречные противопотоки.

Ротор установлен на нижней опорной площадке через магнитный подшипник, существенно снижающий силы трения при вращении ротора, что повышает КПД и срок службы всей установки.

Преимущества предлагаемого технического решения дают возможность более эффективно перенаправить воздушный поток ветра на лопасти ротора.

Экспериментально доказано, что использование предлагаемых конструктивных решений ветроэнергогенерирующей установки позволяет повысить скорость работы ротора на 50-80%, следовательно, и повысить эффективность работы всей установки.

Опытный образец предлагаемого технического решения успешно прошел испытания.

Похожие патенты RU2693554C1

название год авторы номер документа
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2003
  • Зазимко В.Н.
RU2251022C1
ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА WR 2007
  • Смирнов Александр Николаевич
  • Тютяев Андрей Викторович
  • Асанкин Александр Петрович
RU2352808C2
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2011
  • Воронин Сергей Михайлович
  • Бабина Любовь Витальевна
RU2472031C1
ВСЕСЕЗОННАЯ ГИБРИДНАЯ ЭНЕРГЕТИЧЕСКАЯ ВЕРТИКАЛЬНАЯ УСТАНОВКА 2013
  • Лагов Петр Борисович
  • Дренин Андрей Сергеевич
RU2551913C1
ВЕТРОСОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2022
  • Перевалов Валерий Викторович
RU2802564C1
ВЕТРОСОЛНЕЧНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2022
  • Перевалов Валерий Викторович
RU2802563C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПУТЕМ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ УПЛОТНЕННОГО ВОЗДУШНОГО ПОТОКА 2002
  • Хуан Ченьвень
RU2268396C2
ВЕТРОДВИГАТЕЛЬ 1999
  • Баранов А.Н.
  • Гагарин А.Д.
  • Галкин С.А.
  • Дьяков В.С.
  • Серов С.Н.
  • Филатов Ю.П.
RU2168059C2
ВЕТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА 2006
  • Быков Егор Николаевич
  • Васильев Юрий Сергеевич
  • Елистратов Виктор Васильевич
RU2332584C1
ВЕТРОТУРБИННАЯ УСТАНОВКА 2016
  • Белозеров Сергей Николаевич
RU2638120C1

Иллюстрации к изобретению RU 2 693 554 C1

Реферат патента 2019 года Ветроэнергогенерирующая установка

Изобретение относится к области ветроэнергетики. Ветроэнергогенерирующая установка включает ротор с вертикальной осью вращения и вогнутыми лопастями и концентратор цилиндрической формы, состоящий из направляющих, зафиксированные на стойках. При этом, по первому варианту, вогнутые лопасти ротора и вогнутые направляющие концентратора обращены друг к другу вогнутыми поверхностями, и вогнутые направляющие концентратора с радиусом изгиба R закреплены одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора, при этом угол между хордой направляющей и наружным диаметром концентратора находится в пределах от 25° до 45°, а радиус изгиба направляющей вычисляется по формуле: R=R1-R2, где R - радиус изгиба направляющей, R1 - внешний радиус концентратора, R2 - внутренний радиус концентратора. По второму варианту, направляющие концентратора представляют собой фотоэлектрические панели, установленные на рамки, закрепленные одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора и образующие при этом угол α между диаметром концентратора и плоскостью фотоэлектрической панели в диапазоне от 20° до 45°. Изобретение направлено на повышение эффективности работы ветроэнергогенерирующей установки. 2 н. и 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 693 554 C1

1. Ветроэнергогенерирующая установка, включающая ротор с вертикальной осью вращения и вогнутыми лопастями и концентратор цилиндрической формы, состоящий из вогнутых направляющих, зафиксированные на стойках, отличающаяся тем, что ротор установлен на нижней опорной площадке через магнитный подшипник, вогнутые лопасти ротора и вогнутые направляющие концентратора обращены друг к другу вогнутыми поверхностями, и вогнутые направляющие концентратора с радиусом изгиба R закреплены одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора, при этом угол между хордой направляющей и наружным диаметром концентратора находится в пределах от 25° до 45°, а радиус изгиба направляющей вычисляется по формуле:

R=R1-R2, где

R - радиус изгиба направляющей,

R1 - внешний радиус концентратора,

R2 - внутренний радиус концентратора.

2. Ветрогенерирующая установка по п.1, отличающаяся тем, что направляющие выполнены из листовой стали.

3. Ветроэнергогенерирующая установка, включающая ротор с вертикальной осью вращения и вогнутыми лопастями и концентратор цилиндрической формы, состоящий из направляющих, зафиксированные на стойках, отличающаяся тем, что направляющие концентратора представляют собой фотоэлектрические панели, установленные на рамки, закрепленные одним концом к внутреннему опорному кругу концентратора, а другим концом к внешнему опорному кругу концентратора и образующие при этом угол α между диаметром концентратора и плоскостью фотоэлектрической панели в диапазоне от 20° до 45°.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693554C1

US 5391926 A1, 21.02.1995
Станок для шлифования тонких, изготовленных из ферромагнитного металла, листов 1930
  • Романов В.И.
  • Романов М.И.
SU21717A1
0
SU148242A1
РОТОРНЫЙ ВЕТРОДВИГАТЕЛЬ С КОЛЬЦЕВЫМ КОНЦЕНТРАТОРОМ ВОЗДУШНОГО ПОТОКА 2014
  • Алексеенко Виталий Алексеевич
  • Халюткин Владимир Алексеевич
RU2572356C1
Способ изготовления прессованных катодов для ртутных ламп 1940
  • Сасоров В.П.
SU59161A1
Фонтан 1988
  • Капанадзе Шота Давидович
  • Хачидзе Эмзар Дмитриевич
  • Капанадзе Давид Шотаевич
SU1595578A1
US 4551631 A1, 05.11.1985.

RU 2 693 554 C1

Авторы

Новиков Сергей Николаевич

Нагибин Валерий Уфимович

Даты

2019-07-03Публикация

2018-09-04Подача