Способ определения динамики изменения скорости оседания эритроцитов Российский патент 2019 года по МПК G01N33/49 

Описание патента на изобретение RU2695072C1

Предлагаемое изобретение относится к области медицины, а именно к лабораторной клинической диагностике, и может быть использовано для проведения лабораторных анализов, а также в исследовательских целях.

Величина скорости оседания эритроцитов (СОЭ) является неспецифическим показателем, широко используемым в клинической практике для оценки наличия воспалительных процессов в организме человека при различных заболеваниях и позволяющим следить за ходом заболевания и его лечения.

Известен принятый в России (классический) способ оценки скорости оседания эритроцитов, выполненный по методу Панченкова [Лабораторные методы исследования в клинике. / Под ред. Меньшикова В.В. - М: Медицина, 1987. - 368 с.]. Стеклянную градуированную трубку до установленного уровня наполняют смесью крови с 3,8% цитратом натрия (антикоагулянт) в соотношении 4:1 и помещают вертикально в штатив под зажимом (для устранения вытекания крови). Через час после начала измерения по делениям на трубке определяют расстояние (в мм), на которое опустился столбик эритроцитов от исходного уровня

Недостатком данного способа является длительное время анализа (более 1 часа), а также трудности, возникающие при заборе необходимого для исследования объема капиллярной крови (не менее 0.3 мл) и связанные с данным фактом нарушения правил забора и подготовки крови к исследованию.

Также известен классический метод Вестергрена [Лабораторные методы исследования в клинике. / Под ред. Меньшикова В.В. - М.: Медицина, 1987. - 368 с.]. Это показатель скорости разделения крови в пробирке с добавленным антикоагулянтом на 2 слоя: верхний (прозрачная плазма) и нижний (осевшие эритроциты). Скорость оседания эритроцитов оценивается по высоте образовавшегося слоя плазмы в мм за 1 час. Удельная масса эритроцитов выше, чем удельная масса плазмы, поэтому в пробирке при наличии антикоагулянта под действием силы тяжести эритроциты оседают на дно. Скорость, с которой происходит оседание эритроцитов, в основном определяется степенью их агрегациии, т.е. их способностью слипаться вместе.

Недостатком является нарушение соотношения цитрата с кровью. При постановке реакции оседания важно соблюдать точность соотношения цитрата и крови (1:4). Более концентрированный цитрат извлекает воду из эритроцитов и ускоряет оседание. Менее концентрированный цитрат (гипотонический) вызывает поступление воды в эритроцит и замедляет СОЭ.

Известен способ определения динамики изменения скорости оседания эритроцитов [см. Патент РФ №2256917, МПК G01N 33/49, публ. 20.07.2005, Бил. №13], включающий смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с антикоагулянтом в капилляр, размещение его вертикально, с последующим измерением за равные промежутки времени высоты слоя плазмы, свободной от эритроцитов. При этом раствор крови с антикоагулянтом разливают с помощью автоматического дозатора в гематокритный капилляр, нижний конец которого герметично закупоривают, размещают капилляр вертикально в гнездо центрифуги и осуществляют измерение высоты слоя плазмы, свободной от эритроцитов, в режиме вращения центрифуги с угловой скоростью не более 50 об/мин через равные промежутки времени в течение заданного временного интервала, по полученным данным определяют максимальную величину оседания эритроцитов и строят график динамики оседания эритроцитов.

Недостатком способа является низкая точность измерения из-за определения искомых значений по статистической градуировочной характеристике с множеством измерений.

За прототип принят способ определения динамики изменения скорости оседания эритроцитов [см. Патент РФ №2516914, МПК G01N 33/49, Бил. №14], включающий смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с антикоагулянтом в капилляр, размещение его вертикально, при этом раствор крови с антикоагулянтом разливают с помощью автоматического дозатора в гематокритный капилляр, нижний конец, которого герметично закупоривают, размещают капилляр вертикально в гнездо центрифуги и осуществляют измерение высоты слоя плазмы, свободной от эритроцитов, в режиме вращения центрифуги с угловой скоростью не более 50 об/мин, по полученным данным определяют максимальную величину оседания эритроцитов, измеряют высоту слоя плазмы по импульсной динамической характеристике, амплитуду h1,h2 которой фиксируют в два кратных момента времени t1,t2=2t1, по которым регистрируют максимальную величину Н оседания эритроцитов и постоянную времени T, а так же предельную скорость V0, как их отношение, по которым определяют действительную характеристику скорости V(t) оседания эритроцитов.

Недостатком прототипа является то, что он рассчитан на случай, когда оба информативных параметра известны, но как правило, на практике в большинстве случаев оба информативных параметра неизвестны.

Технической задачей является определение действительной характеристики скорости V(t) оседания эритроцитов при неизвестных информативных параметрах - максимальной величине оседания эритроцитов Н и постоянной времени Г для компенсации их нелинейности.

Данная техническая задача решается за счет того, что в способе определения динамики изменения скорости оседания эритроцитов, включающем смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с антикоагулянтом в капилляр, размещение его вертикально, при этом раствор крови с антикоагулянтом разливают с помощью автоматического дозатора в гематокритный капилляр, нижний конец которого герметично закупоривают, размещают капилляр вертикально в гнездо центрифуги и осуществляют измерение высоты слоя плазмы, свободной от эритроцитов, в режиме вращения центрифуги с угловой скоростью не более 50 об/мин, измеряют высоту слоя плазмы по импульсной динамической характеристике, амплитуду h1,h2 которой фиксируют в два кратных момента времени t1,t2=2t1, в отличие от известных решений, определяют постоянную времени Т и максимальную величину оседания эритроцитов Н по калибровочным характеристикам, калибровку проводят априори для двух известных hэ1, hэ2 значений высоты слоя плазмы в два кратных момента времени t1,t2=2t1, калибровочными характеристиками T0i и H0i. служат функция постоянной времени процесса и функция максимальной величины оседания эритроцитов, компенсирующие неопределенность максимальной величины оседания эритроцитов, выбранной произвольно Н*, неопределенность постоянной времени, выбранной произвольно Т* и связывающие эталонную hэi и измеренную hi характеристики высоты слоя плазмы за счет нормирования измеренных значений известными, по калибровочным характеристикам Т0i и H0i находят действительные значения постоянной времени Т и максимальной величины оседания эритроцитов Н, по которым последовательно строят калибровочную характеристику T0i, калибровочную характеристику H0i и действительную характеристику скорости оседания эритроцитов:

Сущность предлагаемого способа поясняется на фиг. 1÷6. Предлагаемый способ включает следующие этапы:

1. Определяют постоянную времени Т по калибровочной функции Ti(t)=Тi.

2. Определяют максимальную величину оседания эритроцитов H по калибровочной функции Hi(t).

3. Калибровку проводят априори для двух известных эталонных hэi (фиг. 1) и измеренных hi, (фиг.1) значений верхней и нижней границ адаптивного диапазона высоты слоя плазмы в два кратных момента времени измерения t1 и t2=2t1.

4. Калибровочными характеристиками служат функция Ti (фиг. 3) постоянной времени и функция максимальной величины оседания эритроцитов Hi (фиг. 2), компенсирующие неопределенность максимальной величины оседания эритроцитов Н* и постоянной времени T* выбранных произвольно (фиг. 1), и связывающие эталонную hэi и измеренную hi зависимости за счет нормирования измеренных значений известными:

По калибровочным характеристикам Ti и Hi восстанавливают действительную характеристику h∂i

которая максимально приближена к эталонной hэi=h∂i:

Эталонная характеристика hэi и характеристика, ей тождественная h∂i, получены из экспоненциальной динамической характеристики с искомыми информативными параметрами Т, Н:

где Т - постоянная времени процесса (фиг. 1, вертикаль) и Н - максимальная величина оседания эритроцитов (фиг. 1, горизонталь). Физический смысл информативных параметров следует из предельных соотношений:

т.е. Н - максимальная величина оседания эритроцитов для t=∞.

т.е. Т - постоянная времени при h=0,66H, т.к.

На практике чаще всего оба информативных параметра исследуемой характеристики, как правило, неизвестны. В этом случае оба параметра выбираем произвольно Т* и Н* (фиг. 1), в результате они принимают вид функций - Ti (фиг. 3) и Hi (фиг. 2), которые компенсируют незнание информативных параметров Н* и T* измеренной характеристики высоты слоя плазмы (фиг. 1). По калибровочным функциям Ti и Hi нормируется измеренная кривая hi=h∂i до тождественного эквивалента hэi (фиг. 1).

Задаем произвольно параметры H*=const и T*=const вместо неизвестного действительного значения максимальной величины оседания эритроцитов Н и неизвестного действительного значения постоянной времени Т соответственно. Для компенсации произвольности константы Н* и константы Т* постоянная времени Т и максимальная величина оседания эритроцитов Н превратятся в характеристики Ti Hi, компенсирующие незнание максимальной величины оседания эритроцитов Н и постоянной времени Т.

Калибровочными функциями для неизвестных параметров Т, Н служат динамическая характеристика Ti (фиг. 3). и динамическая характеристика Hi (фиг. 2).

Калибровочную характеристику Ti выразим из системы уравнений с известными параметрами Т, Н характеристики hэi, являющейся эталонной (получено путем аппроксимации экспериментальных данных), и характеристики hi, измеренной с произвольной константой Н* и характеристикой Ti:

В соответствии с закономерностями калибровки tэi=ti, hэi=hi следует калибровочная характеристика Ti (фиг. 3), связывающая между собой эталонную hэi и измеренную hi характеристики величины оседания эритроцитов

Калибровочную характеристику Hi выразим из системы уравнений с известными параметрами Т, H характеристики hэi, являющейся эталонной (получено путем аппроксимации экспериментальных данных), и характеристики hi, измеренной с произвольной константой Т* и характеристикой Hi:

Поделим одно уравнение системы на другое, чтобы выразить калибровочную характеристику:

В соответствии с закономерностями калибровки tэj=ti, hэi=hi следует калибровочная характеристика Hi (фиг. 2), связывающая между собой эталонную hэi и измеренную hi характеристики высоты слоя плазмы.

Следовательно, калибровочными характеристиками служат функции постоянной времени Ti (фиг. 3) и максимальной величины оседания эритроцитов Hi (фиг. 2), компенсирующие неопределенность максимальной величины оседания эритроцитов Н и постоянной времени процесса Т* (фиг. 1), выбранных произвольно Н* и Т* (фиг. 1).

4. По калибровочным характеристикам Ti (фиг. 3) и Hi (фиг. 2) находят действительные значения максимальной величины оседания эритроцитов Н (фиг. 1) и постоянной времени T (фиг. 1), которые являются информативными параметрами, доставляющими оптимум калибровочным характеристикам. Из уравнения (7) составим систему уравнений для i=1,2:

Поделив одно уравнение системы (8) на другое и проэкспоненцировав, учитывая, что t2=2t1, определяют действительное значение постоянной времени Т:

Подставив в уравнение (8) при i=1 правую часть уравнения (9) вместо постоянной времени Т, выразим действительное значение максимальной величины оседания эритроцитов Н:

5. По полученным информативным параметрам (9) и (10) строят калибровочные характеристики Ti (6) и Hi (7), по которым находят действительную (фиг. 1) характеристику высоты слоя плазмы hdi=hэi, тождественную эквиваленту (4) (фиг. 1), и действительную характеристику скорости оседания эритроцитов (фиг. 4):

Характеристика (11) следует из дифференцирования динамической характеристики (4), т.к. скорость V(t) является ее производной по времени:

Адекватность предлагаемого способа физике эксперимента доказывает математическое моделирование действительной характеристики hdi (фиг. 1), относительно эквивалента 1 экспериментальной характеристики hэ (фиг. 1), по полученным значениям.

Проводят оценку адекватности полученных зависимостей по формуле определения относительной погрешности:

ее оценка представлена на фиг. 5.

Относительная погрешность моделирования не превышает 2,43⋅10-15.

Эффективность по точности определяется нелинейностью η (фиг. 6).

Нелинейность калибровочной характеристики Ti (фиг. 3) и прототипа убывает с увеличением времени от 0,7 до 0,2:

Нелинейность калибровочной характеристики Hi (фиг. 2) и прототипа убывает с увеличением времени от 1,7 до 1:

Нелинейность действительного значения T (фиг. 6) и действительного значения Н (фиг. 6), по которым находят действительную характеристику высоты слоя плазмы, равны единичному эквиваленту:

т.е нелинейность равна 1, что исключает методическую погрешность (12) и (13) действительной характеристики и соответственно предлагаемого способа (фиг. 5).

Динамическая погрешность δизм (фиг. 7) измеренной характеристики hi увеличивается с течением времени с 0,3 до 1,5

Динамическая погрешность δ (фиг. 7) действительной характеристики h постоянна и не превышает 0,01, т.е. на 4 порядка ниже прототипа:

Таким образом, определение максимальной величины оседания эритроцитов по двум калибровочным характеристикам, компенсирующим неопределенность максимальной величины оседания эритроцитов и постоянной времени процесса, выбранных произвольно, по которым определяют действительные значения информативных параметров, действительную характеристику скорости оседания эритроцитов, в отличие от известных решений исключает методическую и динамическую погрешность, что повышает точность на 4 порядка.

Похожие патенты RU2695072C1

название год авторы номер документа
Способ определения динамики изменения скорости оседания эритроцитов 2017
  • Болдырев Дмитрий Валерьевич
  • Ахтямов Дмитрий Валерьевич
  • Неверова Ольга Сергеевна
  • Глинкин Евгений Иванович
RU2660710C1
Способ определения динамики измерения скорости оседания эритроцитов 2016
  • Болдырев Дмитрий Валерьевич
  • Глинкин Евгений Иванович
  • Трубиенко Артем Александрович
RU2655523C2
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗМЕНЕНИЯ СКОРОСТИ ОСЕДАНИЯ ЭРИТРОЦИТОВ 2012
  • Суслина Анастасия Сергеевна
  • Глинкин Евгений Иванович
RU2516914C2
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗМЕНЕНИЯ СКОРОСТИ ОСЕДАНИЯ ЭРИТРОЦИТОВ 2016
  • Болдырев Дмитрий Валерьевич
  • Ахтямов Дмитрий Валерьевич
  • Глинкин Евгений Иванович
RU2640190C2
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗМЕНЕНИЯ СКОРОСТИ ОСЕДАНИЯ ЭРИТРОЦИТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Розенталь В.М.
  • Новиков В.Э.
RU2256917C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ОСЕДАНИЯ КЛЕТОК КРОВИ 2005
  • Розенталь Вадим Михайлович
  • Новиков Виктор Эммануилович
RU2313091C2
Способ определения функционального состояния системы гемостаза 2016
  • Одинокова Александра Александровна
  • Глинкин Евгений Иванович
RU2655304C2
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ОСЕДАНИЯ КЛЕТОК КРОВИ 2008
  • Аристов Александр Александрович
RU2379687C2
Способ определения функционального состояния системы гемостаза 2017
  • Одинокова Александра Александровна
  • Глинкин Евгений Иванович
RU2669347C1
УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОЙ РЕГИСТРАЦИИ ОСАЖДЕНИЯ КРОВИ 1997
  • Воейков В.Л.
  • Гурфинкель Ю.И.
  • Дмитриев А.Ю.
  • Кондаков С.Э.
RU2128945C1

Иллюстрации к изобретению RU 2 695 072 C1

Реферат патента 2019 года Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к медицине и может быть использовано для определения динамики изменения скорости оседания эритроцитов (СОЭ). Для этого проводят смешивание исследуемой пробы крови с антикоагулянтом. Полученный раствор помещают в гематокритный капилляр и центрифугируют. Затем проводят измерение высоты слоя плазмы по импульсной динамической характеристике, амплитуду которой фиксируют в два кратных момента времени. Определяют постоянную времени Т и максимальную величину оседания эритроцитов Н. По калибровочным характеристикам находят действительную характеристику скорости оседания эритроцитов. Изобретение обеспечивает повышение точности определения динамики изменения СОЭ при неизвестных информативных параметрах - максимальной величине оседания эритроцитов и постоянной времени для компенсации их нелинейности. 7 ил.

Формула изобретения RU 2 695 072 C1

Способ определения динамики изменения скорости оседания эритроцитов, включающий смешивание исследуемой пробы крови с антикоагулянтом, забор полученного раствора крови с антикоагулянтом в капилляр, размещение его вертикально, при этом раствор крови с антикоагулянтом разливают с помощью автоматического дозатора в гематокритный капилляр, нижний конец которого герметично закупоривают, размещают капилляр вертикально в гнездо центрифуги и осуществляют измерение высоты слоя плазмы, свободной от эритроцитов, в режиме вращения центрифуги с угловой скоростью не более 50 об/мин, измеряют высоту слоя плазмы по импульсной динамической характеристике, амплитуду h1, h2 которой фиксируют в два кратных момента времени t1, t2=2t1, отличающийся тем, что определяют постоянную времени Т и максимальную величину оседания эритроцитов Н по калибровочным характеристикам, калибровку проводят априори для двух известных hэ1, hэ2 значений высоты слоя плазмы в два кратных момента времени t1, t2=2t1, калибровочными характеристиками T0i и H0i служат функция постоянной времени процесса и функция максимальной величины оседания эритроцитов, компенсирующие неопределенность максимальной величины оседания эритроцитов, выбранной произвольно H*, неопределенность постоянной времени, выбранной произвольно Т*, и связывающие эталонную hэi и измеренную hi характеристики высоты слоя плазмы за счет нормирования измеренных значений известными, по калибровочным характеристикам T0i и H0i находят действительные значения постоянной времени Т и максимальной величины оседания эритроцитов Н, по которым последовательно строят калибровочную характеристику T0i, калибровочную характеристику H0i и действительную характеристику скорости оседания эритроцитов:

.

Документы, цитированные в отчете о поиске Патент 2019 года RU2695072C1

СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗМЕНЕНИЯ СКОРОСТИ ОСЕДАНИЯ ЭРИТРОЦИТОВ 2012
  • Суслина Анастасия Сергеевна
  • Глинкин Евгений Иванович
RU2516914C2
EP 754945 B1, 13.09.2000
АРИСТОВ А.А
и др., Способ оценки процесса оседания эритроцитов крови в микрообъемных пробах, Альманах клинической медицины, 2008, N 17, С.33-36
CHATURVEDI A., et al., An efficient microscale technique for determining the erythrocyte sedimentation rate, SLAS Technol., 2017
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 695 072 C1

Авторы

Болдырев Дмитрий Валерьевич

Неверова Ольга Сергеевна

Глинкин Евгений Иванович

Даты

2019-07-19Публикация

2018-03-06Подача