ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к способу и устройству для определения величины, характеризующей тепловое сопротивление разделительной стены между первой средой и второй средой.
Уровень техники
Изобретение может быть применено для определения величины, характеризующей тепловое сопротивление любого типа разделительной стены между двумя средами, особенно стены здания, стены транспортного средства, стены печи, стены резервуара.
В частности, изобретение может быть применено для определения величины, характеризующей тепловое сопротивление элемента конструкции, относящегося к оболочке помещения, такой как стена, пол, крыша, окно, дверь и т.д., при этом элемент конструкции в дальнейшем представляет собой разделительную стену между внутренней частью и внешней средой помещения.
В данном документе термин "помещение" обозначает любое место для проживания или хранения. В частности, данное помещение можно быть местом для постоянного проживания или хранения, таким как отдельный дом или здание, в частности, для проживания или третьестепенного использования, или частью такого здания, например, квартирой в здании с многочисленными этажами, или же таким как машина, в частности, в секторе для бытовых электроприборов, печи, холодильника и т.д. Это помещение может также быть передвижным местом для постоянного проживания или хранения, таким как вагон поезда, салон автомобиля, кабина грузовика или место для хранения в грузовике, каюта на судне или место для хранения на судне.
В рамках изобретения выражение "величина, характеризующая тепловое сопротивление стены" обозначает любую величину, характеризующую способность стены пропускать через себя тепловой поток. В рамках способа и устройства согласно изобретению, это выражение можно, в частности, определить как любую величину, характеризующую тепловое сопротивления стены:
коэффициент теплопропускания стены, обозначенный
общее тепловое сопротивление стены, обозначенное
тепловое сопротивление от поверхности до поверхности стены, обозначенное
Коэффициент
где
Общее тепловое сопротивление
Определение коэффициента
Известно определение коэффициента
Более конкретно, настоящее изобретение направлено на устранение указанных недостатков за счет выполнения способа и устройства, которые позволяют быстро определить величину, характеризующую тепловое сопротивление разделительной стены между первой средой и второй средой, в частности, в течение одной ночи или даже нескольких часов, независимо от типа стены, с умеренной стоимостью и разумной точностью, при этом стена может быть, например, элементом конструкции, относящимся к оболочке помещения.
Сущность изобретения
С этой целью одним предметом изобретения является способ определения величины, характеризующей тепловое сопротивление разделительной стены между первой средой и второй средой, который характеризуется тем, что он содержит этапы, на которых:
- в течение по меньшей мере двух последовательных периодов
- определяют значение величины, характеризующей тепловое сопротивление стены, добиваясь совпадения: с одной стороны, тепловой модели, выражающей изменение во времени температуры в одной среде, отделенной от другой среды стеной, в зависимости от теплового потока через стену, температуры в другой среде и физических параметров стены, на основе которых рассчитывают величину, характеризующую тепловое сопротивление стены; и, с другой стороны, измеренного изменения
Как это определено изобретением, тот факт, что добиваются совпадения тепловой модели и измеренного изменения
В качестве примера в случае, где тепловая модель является простой моделью R-C с одним резистором и одним конденсатором, и где для каждого периода
Согласно другому примеру в случае, где тепловая модель является более сложной моделью R-C, такой как так называемая модель "2R2C" с двумя резисторами и двумя конденсаторами или же так называемая модель "3R2C" с тремя резисторами и двумя конденсаторами, добиваются совпадения более сложной модели R-C и измеренного изменения
На практике в тепловую модель вводятся входные данные, такие как размеры стены, теплового потока
Примеры физических параметров стены, которые могут служить помехой для тепловой модели и которые будут регулироваться таким образом, чтобы добиться совпадения тепловой модели и измеренного изменения
Изобретение позволяет на месте определять тепловое сопротивление стены. Принцип, лежащий в основе изобретения, заключается в использовании переходных изменений температуры в первой среде, когда первая среда подвергается управляемым внутренним импульсным воздействиям, и в измеренной внешней окружающей обстановке. Количественный анализ изменения температуры в первой среде позволяет количественно определить энергоэффективность стены в течение короткого периода, продолжающегося в течение нескольких часов, при этом ограничивая количество параметров, способных влиять на тепловое поведение стены и первой и второй сред. В частности, в случае определения теплового сопротивления элемента конструкции, относящегося к оболочке помещения, краткость измерений позволяет обойти влияние условий использования помещения и изменений внешних климатических условий.
Предпочтительно, чтобы изменение температуры в первой среде анализировалось вблизи стены, для которой необходимо определить величину, характеризующую тепловое сопротивление.
В рамках изобретения, " мощность нагрева первой среды" означает любое рабочее состояние, вызывающее изменение температуры в первой среде для заданных температурных условий во второй среде. Предполагается, что мощность нагрева может быть положительной, равна нулю или отрицательной. Положительная мощность нагрева соответствует подаче тепла в первую среду, тогда как отрицательная мощность нагрева соответствует подаче холода в первую среду.
Периоды
Предпочтительно, способ реализуют в двух последовательных периодах
В предпочтительном варианте осуществления с целью ограничения времени реализации способа при уменьшении вклада солнечной радиации способ выполняется полностью и непрерывно в течение одного ночного периода.
Согласно одному аспекту изобретения измерения теплового потока
В предпочтительном варианте датчик теплового потока представляет собой измеритель теплового потока, совместимый со стандартом ISO 9869:1994, в частности, градиентный измеритель теплового потока.
Согласно одному аспекту изобретения учитывается сопротивление потоку благодаря измерителю теплового потока, и в измеренный тепловой поток вносится поправка для того, чтобы получить тепловой поток, относящийся только к стене, для которой необходимо определить тепловое сопротивление. Это особенно важно для стен с низким тепловым сопротивлением, таких как одинарное остекление.
В предпочтительном варианте измерения температуры
Согласно одному аспекту изобретения измерения температуры
Согласно одному аспекту изобретения измерения температуры
Тепловая модель, используемая для определения значения величины, характеризующей тепловое сопротивление стены, может быть любого типа, известного специалисту в данной области техники. Она может быть особенно моделью R-C с подходящим количеством резисторов и конденсаторов.
Предпочтительно тепловая модель, используемая для определения значения величины, характеризующей тепловое сопротивление стены, является простой моделью R-C с одним резистором и одним конденсатором.
Согласно варианту тепловая модель, используемая для определения значения величины, характеризующей тепловое сопротивление стены, может быть так называемой моделью R-C "2R2C" с двумя резисторами и двумя конденсаторами или же так называемой моделью R-C "3R2C" с тремя резисторами и двумя конденсаторами.
В предпочтительном варианте осуществления тепловая модель, используемая для определения значения величины, характеризующей тепловое сопротивление стены, является простой моделью R-C с одним резистором и одним конденсатором, и для каждого периода
Разумеется, способ согласно изобретению не обязательно требует графического представления изменения
В частности, для каждого временного интервала
Этапы вычисления способа, в частности, для определения углов
В рамках изобретения согласно принципу, объясненному в заявке на патент WO 2012/028829 A1, простая модель R-C используется для описания помещения, с двумя однородными температурными узлами, одним внутри помещения и другим вне помещения, которые разделены резистором, представляющим общий коэффициент
где
Предполагается, что температурный отклик помещения является простой убывающей показательной функцией, и что его постоянная времени является произведением общего коэффициента
Применяя две мощности
где (
Согласно настоящему изобретению аналогичным образом можно определить коэффициент
где (
Согласно одному варианту осуществления способ содержит этапы, на которых:
- в течение двух последовательных периодов
1) в течение первого периода
2) в течение второго периода
определяют значение величины, характеризующей тепловое сопротивление стены, добиваясь совпадения: с одной стороны, тепловой модели, выражающей изменение во времени температуры одной среды, отделенной от другой среды стеной, в зависимости от теплового потока через стену, температуры другой среды и физических параметров стены, на основе которых рассчитывают величину, характеризующую тепловое сопротивление стены; и, с другой стороны, измеренного изменения
В данном варианте осуществления выбрана удельная тепловая нагрузка первой среды, которая позволяет обращаться к значению величины, характеризующей тепловое сопротивление стены, с хорошей точностью и за меньшее время, причем эта удельная тепловая нагрузка представляет собой подвод строго положительной или строго отрицательной первой мощности
Предпочтительно первая мощность
Определение значения первой мощности
Первый способ обращения к контрольному значению
где
Использование стандарта ISO 13789:2007 является предпочтительным способом обращения к контрольному значению
Второй способ обращения к контрольному значению
"Совместное нагревание" представляет собой квазистатический способ, цель которого состоит в том, чтобы измерить общие теплопотери незанятого помещения. Испытание с использованием "совместного нагревания" включает в себя нагревание помещения в течение нескольких дней, как правило, в течение одной - трех недель при постоянной и равномерной температуре посредством электрических радиаторов, на которых установлены вентиляторы и которые подключены к системе регулирования. Установка температуры должна быть достаточно высокой, порядка 25°C, чтобы иметь разность температур между внутренней частью помещения и внешней поверхностью не менее 10°C. При достижении насыщения, то есть когда достигается квазистатическое состояние, измеряется мощность P, необходимая для поддержания помещения при температуре 25°C, внутренней температуре Tint и наружной температуре Text. В частности, внутреннюю температуру Tint можно измерить с помощью термопар или термисторов, тогда как наружную температуру Text можно измерить посредством метеорологической станции. Обработка данных позволяет затем получить значение
Более точная процедура состоит в следующем:
Сначала проводится первое испытание на герметизацию, которое позволяет измерить потери, связанные с вентиляцией и пропусканием тепла.
После этого закрываются отверстия, такие как дымоходы или вентиляционные отверстия, с тем чтобы потери, связанные с вентиляцией, больше не были бы доступны для измерения.
Затем помещение равномерно нагревается электрическим способом до тех пор, пока не установится высокая температура порядка 25°C.
Затем измеряют мощность P, внутреннюю температуру Tint и наружную температуру Text. Обработка этих измерений позволяет получить доступ к потерям из-за теплопередачи и пропускания тепла.
Наконец, проводится второе испытание на герметичность с тем, чтобы определить теплопотери только из-за пропускания тепла, при этом отверстия в помещении остаются закрытыми.
Для обработки измерений среднее значение мощности, необходимое для поддержания в помещении при установке температуры, и среднее значение разности температур между внутренней частью и внешней средой определяются каждый день, в течение двадцати четырех часов. Затем эти усредненные данные отображаются на графике, показывающем мощность в зависимости от разности температур. Следует внести коррекцию вследствие солнечной радиации, которая также участвует в нагревании помещения. Угол наклона прямой, проходящей через начало координат, задается линейной регрессией, что соответствует коэффициенту
Этот способ "совместного нагревания" является относительно простым в реализации и обеспечивает непосредственно контрольное значение
Третий способ обращения к контрольному значению
Когда тепловая модель, используемая для определения значения величины, характеризующей тепловое сопротивление стены, является моделью R-C с одним резистором и одним конденсатором, для каждого из первого и второго периодов
Предпочтительно временные интервалы
В предпочтительном варианте для каждого периода
Управляемый источник энергии для нагревания первой среды может быть стационарным элементом оборудования первой среды, то есть нагревательным средством, установленным в первой среде независимо от реализации способа при условии, что это нагревательное средство имеет низкую инерцию, и его можно регулировать для того, чтобы обеспечить быстрое нагревание первой среды. В частности, это средство может быть тепловым насосом, чей коэффициент преобразования энергии (COP) является известным.
В качестве варианта управляемый источник энергии для нагревания первой среды может быть источником, введенным в первую среду специально для реализации способа.
Согласно другому варианту нагревание первой среды на протяжении каждого периода времени можно реализовать, используя комбинацию из по меньшей мере одного нагревательного элемента, стационарно расположенного в первой среде независимо от реализации способа, и по меньшей мере одного нагревательного элемента, введенного в первую среду специально для реализации способа.
Нагревательные элементы первой среды могут быть конвективного, проводящего или излучательного типа или сочетать в себе несколько из этих технологий. Предпочтительно нагревательные элементы представляют собой электрические приборы, что позволяет прямо и точно определять мощность нагрева. Примеры электронагревательных приборов содержат, в частности, бытовые электроприборы конвективного типа, в том числе, с продувкой воздуха, нагретого с помощью электрических резисторов; нагревательных матов или пленок; зонтикообразные инфракрасные обогреватели и т.д. В качестве варианта нагревательные элементы могут быть бытовыми приборами, работающими на газе или жидком топливе, при условии, что эффективность горелок и расход топлива могут быть оценены достаточно точным образом для обращения к мощности нагрева.
В предпочтительном варианте осуществления нагревательные элементы первой среды представляют собой электрические нагревательные маты, которые распределены в первой среде путем их вертикального размещения и свертывания с тем, чтобы вся их мощность нагрева рассеялась в воздухе в первой среде. Такая компоновка обеспечивает быстрый и равномерный нагрев первой среды, гарантируя, что температура среды достаточно близка к температуре поверхности стены на стороне первой среды. Согласно варианту нагревательные элементы первой среды представляют собой небольшие электрические конвекторы, распределенные в первой среде.
Если способ изобретения реализуется с помощью первой среды, содержащей внутренние перегородки, которые разделяют несколько комнат или областей первой среды, температуру можно измерять в нескольких комнатах или зонах первой среды, и температуру в первой среде в каждый момент времени t можно рассматривать как среднее значение измерений температуры, полученных в момент времени t в различных комнатах или областях первой среды, каждое из которых взвешивается по объему комнаты или области.
Согласно одному аспекту изобретения мощность нагрева, подаваемая в первую среду, измеряется с использованием по меньшей мере одного датчика мощности. Один или каждый датчик мощности может представлять собой датчик напряжения (вольтметр) и/или датчик тока (амперметр). Предпочтительно, один или каждый датчик мощности представляет собой измеритель мощности, снабженный как датчиком напряжения, так и датчиком тока. Это позволяет точно измерять мощность в первой среде, избегая при этом возможных колебаний напряжения в сети или определения сопротивления каждого нагревательного элемента.
Согласно одному аспекту изобретения способ реализуется таким образом, чтобы определить, на основе одной и той же тепловой нагрузки первой среды, коэффициент
Согласно предпочтительному аспекту определяется также общий коэффициент
В одном варианте осуществления общий коэффициент теплопотерь помещения определяется следующим образом:
-выполняют, в течение каждого из упомянутых периодов
- определяют значение коэффициента теплопотерь помещения, добиваясь совпадения:
- тепловой модели, выражающей изменение во времени температуры внутри помещения в зависимости от мощности нагрева, подводимой в помещение, температуры наружного воздуха и физических параметров помещения, на основе которых рассчитывается коэффициент теплопотерь помещения, с одной стороны, и
- измеренного изменения температуры внутри помещения в зависимости от времени, с другой стороны.
В предпочтительном варианте мероприятия по измерению теплового потока
Как описано ранее, в изобретении предложено подводить различные мощности
В качестве варианта можно также устанавливать различные температуры
Согласно данному варианту один предмет изобретения представляет собой способ определения величины, характеризующей тепловое сопротивление разделительной стены между первой средой и второй средой, содержащий этапы на которых:
- в течение по меньшей мере двух последовательных периодов
определяют значение величины, характеризующей тепловое сопротивление стены, добиваясь совпадения: с одной стороны, тепловой модели, выражающей изменение во времени мощности в одной среде, отделенной от другой среды стеной, в зависимости от теплового потока через стену, температуры другой среды и физических параметров стены, на основе которых рассчитывается величина, характеризующая тепловое сопротивление стены; и, с другой стороны, измеренного изменения
Предпочтительно, способ реализуют в двух последовательных периодах
Другой аспект изобретения, который может рассматриваться независимо от определения величины, характеризующей тепловое сопротивление разделительной стены между первой средой и второй средой, представляет собой способ определения общего коэффициента
- в течение по меньшей мере двух последовательных периодов
- определяют значение коэффициента
Предпочтительно, способ реализуют в двух последовательных периодах
Одним предметом изобретения является также носитель информации, содержащий инструкции для реализации всех или части этапов вычисления способа, как описано ранее, при исполнении этих инструкций электронным блоком вычисления.
Другим предметом изобретения является устройство для реализации способа, как описано ранее, содержащее:
- по меньшей мере один нагревательный элемент содержащий управляемый источник энергии;
- по меньшей мере один датчик теплового потока, предназначенный для установки на поверхности стены для измерения теплового потока через стену;
- по меньшей мере один датчик температуры, предназначенный для измерения температуры
- электронный блок вычисления;
- носитель информации, содержащий инструкции, предназначенные для исполнения электронным блоком вычисления, для реализации всех или части этапов вычисления способа.
В соответствии с предпочтительной особенностью один или каждый нагревательный элемент нагревает воздух в первой среде. Это позволяет быстро нагревать первую среду. Так обстоит дело, в частности, с множеством электрических конвекторов, распределенных в первой среде, или с электрическими нагревательными матами, которые описаны ранее и которые расположены вертикально в первой среде, и свернуты таким образом, чтобы вся мощность нагрева рассеивалась в воздухе.
Согласно одному аспекту изобретения датчик или датчики температуры содержат по меньшей мере один датчик окружающей температуры, предназначенный для установки в объеме воздуха в первой среде.
Согласно одному аспекту изобретения датчик или датчики температуры содержат по меньшей мере один датчик температуры поверхности, предназначенный для установки на или напротив поверхности стены в первой среде.
В предпочтительном варианте электронный блок вычисления содержит средство управления источником энергии одного или каждого нагревательного элемента.
В одном варианте осуществления устройство содержит по меньшей мере один корпус, содержащий датчик теплового потока и датчик температуры, и средство связи, особенно беспроводное, между корпусом и электронным блоком вычисления.
Краткое описание чертежей
Особенности и преимущества изобретения станут очевидными из последующего описания варианта осуществления способа и устройства согласно изобретению, приведенного исключительно в качестве примера и со ссылкой на прилагаемые чертежи, на которых:
на фиг.1 показан схематичный вид бунгало, чья оболочка содержит несколько элементов конструкции, а именно, пол, потолок, стену с дверью (которая считается частью стены), набора из двух остеклений, где необходимо определить коэффициент теплопропускания каждого из этих элементов в соответствии с изобретением;
на фиг.2 и 3 показаны графики, иллюстрирующие, для одного из остеклений, относящихся к оболочке бунгало (фиг.1), соответственно, изменение внутренней температуры
на фиг.4 показан график, иллюстрирующий распределение относительных вкладов различных составляющих элементов конструкции оболочки бунгало (фиг.1) в общие теплопотери бунгало;
на фиг.5 показана схема так называемой модели "2R2C" бунгало (фиг.1) с двумя резисторами и двумя конденсаторами;
на фиг.6 показан график, иллюстрирующий соответствие модели 2R2C (фиг.5) изменению внутренней температуры
Подробное описание изобретения
Способ согласно изобретению реализован для определения коэффициента
Бунгало 1 имеет общую площадь 13,5 м2, площадь остекления 3,9 м2, высоту внутри помещения 2,5 м, объем 34,2 м3 и общую площадь оболочки 68,5 м2. Внешняя стена бунгало 1 состоит из изолирующей многослойной панели, содержащей полиуретановый слой толщиной 35 мм, помещенной между двумя металлическими пластинами, двери (считающейся частью стены) и двух остеклений, которые представляют собой тройное остекление.
Способ реализуется при условии, что бунгало 1 не занято.
Коэффициент
Нагревание бунгало 1 обеспечивается электронагревательными матами 2, где каждый нагревательный мат имеет номинальную мощность 112,5 Вт. Нагревательные маты 2 распределены в бунгало путем размещения в вертикальном свернутом положении, как схематично показано на фиг.1, что позволяет быстро и равномерно нагревать бунгало.
Способ согласно изобретению реализуется непрерывно и полностью в течение одного ночного периода времени, чтобы исключить вклад солнечной радиации в нагрев бунгало 1.
Для начала проводится нагревание бунгало в течение первого периода
Для каждого периода
На первом этапе способа, который соответствует первому периоду
Затем внутри бунгало измеряется температура
На фиг.2 показана кривая, характеризующая изменения внутренней температуры
На фиг.2 также показано изменение температуры
Тепловой поток через каждый элемент конструкции, также измеряется каждые десять секунд с помощью измерителя теплового потока градиентного типа HFP01, продаваемого компанией Hukseflux, который расположен на внутренней поверхности элемента конструкции. На фиг.3 в качестве примера показана кривая, характеризующая изменения теплового потока
На втором этапе способа, который соответствует второму периоду
На фиг.2 показана кривая, характеризующая изменения внутренней температуры
Изменение температуры
Тепловой поток через каждый элемент конструкции, также измеряется каждые десять секунд, с помощью измерителя теплового потока градиентного типа HFP01, установленного на внутренней поверхности элемента конструкции. В качестве примера кривая, характеризующая изменения теплового потока
Так как
Значения коэффициента
Таблица 1
(K/час)
(K/час)
(Вт/м2)
(Вт/м2)
(°C)
(°C)
(Вт/м2K)
(в том числе дверь)
Для сравнения значение, вычисленное в соответствии со стандартом ISO 6946:2007 коэффициента теплопропускания стены, равно 0,70 Вт/м2K ± 0,13 Вт/м2K, и это значение для потолка равно 0,43 Вт/м2K ± 0,07 Вт/м2K. Более того, значение, обеспечиваемое изготовителем и вычисленное в соответствии со стандартом ISO 10077:2012, коэффициента
На основании измерений, выполненных в течение периодов
Далее, можно построить график, показывающий распределение относительных вкладов различных составляющих элементов конструкции оболочки помещения в общие теплопотери помещения. Этот график, полученный путем взвешивания коэффициента
Таблица 2
(Вт/м2K)
(м2)
(Вт/K)
(в том числе дверь)
(пропускание тепла, тепловые мосты и т.д.)
Получение распределения потерь между различными элементами конструкции является полезным инструментом для рекомендации, в частности, в контексте реконструкции.
Способ обработки данных, описанный выше, соответствует случаю, где используемая тепловая модель является простой моделью R-C с одним резистором и одним конденсатором.
В качестве варианта кривые изменения внутренней температуры в зависимости от времени для каждого составляющего элемента конструкции оболочки бунгало 1, а именно, для пола, потолка, стены, набора двух остеклений, были обработаны с помощью модели 2R2C бунгало с использованием двух резисторов и двух конденсаторов, схема которой показана на фиг.5.
В этой модели 2R2C предполагается, что во внешней области будет установлена постоянная температура TE, два узла TP и TI схематично представляют удельные теплоемкости стенок и внутреннего воздуха, каждая из них имеет связанное значение инерции C1, C2, и два резистора R1, R2 размещаются между узлами. Один резистор R2, расположенный между внешней областью и узлом стенок, представляет собой сопротивление стены, в то время как другой резистор R1, расположенный между узлом стенок и внутренним участком, представляет собой сопротивление внутренней конвекции. В этом случае коэффициент
В качестве примера на фиг.6 показано соответствие модели 2R2C, описанной выше, изменению внутренней температуры
Таблица 3
(в том числе дверь)
Следует отметить, что значения коэффициентов
На практике, в предыдущем примере при использовании простой модели R-C этапы выбора временных интервалов
Изобретение не ограничивается примерами, описанными выше.
В частности, способ согласно изобретению можно реализовать с помощью нагревательного средства, которым стационарно оборудована первая среда, и/или с помощью нагревательного средства, которое принесено в первую среду специально для реализации способа, при условии, что можно точно определить мощность, обеспечиваемую этим нагревательным средством в течение импульсов, требуемых для выполнения способа.
Кроме того, в приведенных выше примерах способ определения величины, характеризующей тепловое сопротивление стены, и способ определения коэффициента теплопотерь помещения реализуются с периодами
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТЕПЛОВЫХ ПОТЕРЬ ПОМЕЩЕНИЯ | 2014 |
|
RU2655640C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВОЗДУХООБМЕНА В КОМНАТЕ ИЛИ ЗДАНИИ | 2017 |
|
RU2741193C2 |
СИСТЕМА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ИНЖЕНЕРНЫМИ СИСТЕМАМИ ЖИЛОГО ЗДАНИЯ | 2016 |
|
RU2621770C1 |
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ И ТЕПЛОВОГО СОПРОТИВЛЕНИЯ СТРОИТЕЛЬНОЙ КОНСТРУКЦИИ | 2011 |
|
RU2527128C2 |
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СОПРОТИВЛЕНИЯ ТЕПЛОПЕРЕДАЧЕ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ | 2005 |
|
RU2323435C2 |
Имитационная модель животного | 1991 |
|
SU1783567A1 |
СТЕНА ВОДНАЯ СОЛНЦЕЗАЩИТНАЯ | 2022 |
|
RU2815801C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ ТЕПЛОПЕРЕДАЧЕ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ СТРОИТЕЛЬНЫХ СООРУЖЕНИЙ | 2011 |
|
RU2468359C1 |
СПОСОБ МОНИТОРИНГА ОБЪЕКТОВ ТЕПЛОСНАБЖЕНИЯ И СПОСОБ КОНТРОЛЯ СИСТЕМЫ ОТОПЛЕНИЯ ЗДАНИЙ | 2002 |
|
RU2232352C2 |
Способ определения минимального времени включения системы отопления на нагрев помещения здания | 2021 |
|
RU2781893C1 |
Изобретение относится к области измерительной техники и может быть использовано для определения величины, характеризующей тепловое сопротивление любого типа разделительной стены между двумя средами, особенно стены здания, стены транспортного средства, стены печи, стены резервуара. Предложен способ, который нацелен на определение величины, характеризующей тепловое сопротивление разделительной стены между первой средой и второй средой, содержащий этапы, на которых в течение по меньшей мере двух последовательных периодов
1. Способ определения величины, характеризующей тепловое сопротивление (
- в течение по меньшей мере двух последовательных периодов
- определяют значение величины, характеризующей тепловое сопротивление (
○ с одной стороны, тепловой модели, выражающей изменение во времени температуры, соответственно изменение во времени мощности, в одной среде, отделенной от другой среды стеной, в зависимости от теплового потока через стену, температуры в другой среде и физических параметров стены, на основе которых рассчитывается величина, характеризующая тепловое сопротивление стены, и
○ с другой стороны, измеренного изменения температуры
2. Способ по п.1, отличающийся тем, что его реализуют в двух последовательных периодах времени
3. Способ по любому из предыдущих пунктов, отличающийся тем, что измерения теплового потока
4. Способ по п.3, отличающийся тем, что измерения температуры
5. Способ по любому из предыдущих пунктов, отличающийся тем, что измерения температуры
6. Способ по любому из предыдущих пунктов, отличающийся тем, что измерения температуры
7. Способ по любому из предыдущих пунктов, отличающийся тем, что тепловая модель является моделью R-C с одним резистором и одним конденсатором.
8. Способ по любому из предыдущих пунктов, отличающийся тем, что он содержит этапы, на которых:
- в течение двух последовательных периодов
i. в течение первого периода
ii. в течение второго периода
- определяют значение величины, характеризующей тепловое сопротивление (
○ тепловой модели, выражающей изменение во времени температуры в одной среде, отделенной от другой среды стеной, в зависимости от теплового потока через стену, температуры в другой среде и физических параметров стены, на основе которых рассчитывается величина, характеризующая тепловое сопротивление стены, с одной стороны, и
○ измеренного изменения
9. Способ по п.8, отличающийся тем, что первая мощность
10. Способ по п.7, отличающийся тем, что для каждого периода
11. Способ по любому из предыдущих пунктов, отличающийся тем, что для каждого периода
12. Способ по п.11, отличающийся тем, что управляемый источник энергии является стационарным элементом оборудования первой среды.
13. Способ по п.11, отличающийся тем, что управляемый источник энергии является источником, введенным в первую среду специально для реализации способа.
14. Способ определения тепловых свойств помещения, отличающийся тем, что определяют коэффициент
15. Способ по п.14, отличающийся тем, что также определяют коэффициент
16. Способ по п.15, отличающийся тем, что коэффициент
- выполняют в течение каждого из упомянутых периодов
- определяют значение коэффициента
○ тепловой модели, выражающей изменение во времени температуры внутри помещения в зависимости от мощности нагрева, подводимой в помещение, температуры наружного воздуха и физических параметров помещения, на основе которых рассчитывается коэффициент теплопотерь помещения, с одной стороны, и
○ измеренного изменения температуры внутри помещения в зависимости от времени, с другой стороны.
17. Носитель информации, отличающийся тем, что он содержит инструкции для реализации всех или части этапов вычисления способа по любому из предыдущих пп.1-16, когда эти инструкции исполняются электронным блоком вычисления.
18. Устройство для реализации способа по любому из пп.1-16, отличающееся тем, что оно содержит:
- по меньшей мере один нагревательный элемент, содержащий управляемый источник энергии;
- по меньшей мере один датчик теплового потока, предназначенный для установки на поверхности стены для измерения теплового потока через стену;
- по меньшей мере один датчик температуры, предназначенный для измерения температуры
- электронный блок вычисления;
- носитель информации, содержащий инструкции, предназначенные для исполнения электронным блоком вычисления, для реализации всех или части этапов вычисления способа.
19. Устройство по п.18, отличающееся тем, что упомянутый или каждый нагревательный элемент нагревает воздух в первой среде.
20. Устройство по любому из пп.18 или 19, отличающееся тем, что датчик или датчики температуры содержат по меньшей мере один датчик окружающей температуры, предназначенный для измерения температуры воздуха в первой среде.
21. Устройство по любому из пп.18-20, отличающееся тем, что датчик или датчики температуры содержат по меньшей мере один датчик температуры поверхности, предназначенный для измерения температуры поверхности стены в первой среде.
22. Устройство по любому из пп.18-21, отличающееся тем, что электронный блок вычисления содержит средство управления источником энергии одного или каждого нагревательного элемента.
23. Устройство по любому из пп.18-22, отличающееся тем, что оно содержит:
- по меньшей мере один корпус, содержащий датчик теплового потока и датчик температуры,
- средство связи, особенно беспроводное, между корпусом и электронным блоком вычисления.
WO 2011117356 A1, 29.09.2011 | |||
WO 2012028829 A1, 08.03.2012 | |||
СПОСОБ ИНТЕЛЛЕКТУАЛЬНОГО ЭНЕРГОСБЕРЕЖЕНИЯ НА ОСНОВЕ ИНСТРУМЕНТАЛЬНОГО МНОГОПАРАМЕТРОВОГО МОНИТОРИНГОВОГО ЭНЕРГЕТИЧЕСКОГО АУДИТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2516203C2 |
Регулирующий направляющий аппарат для реактивных водяных турбин | 1931 |
|
SU26254A1 |
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ И КОНСТРУКЦИЙ | 2008 |
|
RU2383008C1 |
СПОСОБ ТЕПЛОТЕХНИЧЕСКОГО ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ | 2011 |
|
RU2475729C1 |
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ МНОГОСЛОЙНЫХ ОБЪЕКТОВ | 2004 |
|
RU2261437C1 |
WO 2013153251 A1, 17.10.2013. |
Авторы
Даты
2019-08-08—Публикация
2016-02-05—Подача