Изобретение относится к области нанотехнологии.
Ранее были известны способы получения микрокапсул солей.
В пат. 2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул этилнитрата, отличающийся тем, что в качестве оболочки нанокапсул используется каппа-каррагинан при получении наночастиц методом осаждения нерастворителем с применением хлороформа в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием хлороформа в качестве осадителя, а также использование каппа-каррагинана в качестве оболочки частиц.
Результатом предлагаемого метода является получение нанокапсул этилнитрата в оболочке из каппа-каррагинана.
ПРИМЕР 1 Получение нанокапсул этилнитрата, соотношение ядро : оболочка 1:3
1 г этилнитрата медленно прибавляют в суспензию 3 г каппа-каррагинана в толуоле в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами; свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 5 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка. Выход составил 100%.
ПРИМЕР 2 Получение нанокапсул этилнитрата, соотношение ядро : оболочка 1:5
1 г этилнитрата медленно добавляют в суспензию 5 г каппа-каррагинана в толуоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 5 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка. Выход составил 100%.
ПРИМЕР 3 Получение нанокапсул этилнитрата, соотношение ядро : оболочка 1:2
1 г этилнитрата медленно добавляют в суспензию 2 г каппа-каррагинана в толуоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Далее приливают 5 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка. Выход составил 100%.
Этилнитрат обладает взрывчатыми свойствами. Поэтому работать с ним необходимо с предосторожностями.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокапсул тимола | 2020 |
|
RU2730834C1 |
Способ получения нанокапсул L-метионина | 2018 |
|
RU2701142C1 |
Способ получения нанокапсул циклотриметилентринитроамина (гексогена) | 2019 |
|
RU2698192C1 |
Способ получения нанокапсул тринитротолуола | 2018 |
|
RU2699014C1 |
Способ получения нанокапсул циклотетраметилентетранитроамина (бета-октогена) | 2019 |
|
RU2714494C1 |
Способ получения нанокапсул 2,4-динитроанизола | 2018 |
|
RU2697842C1 |
Способ получения нанокапсул витамина РР (никотинамида) | 2018 |
|
RU2697841C1 |
Способ получения нанокапсул сухого экстракта одуванчика | 2018 |
|
RU2691399C1 |
Способ получения нанокапсул сухого экстракта кордицепса в каппа-каррагинане | 2018 |
|
RU2691390C1 |
Способ получения нанокапсул витамина В | 2019 |
|
RU2703269C1 |
Изобретение относится к области нанотехнологии, конкретно к способу получения нанокапсул этилнитрата. Способ характеризуется тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, а в качестве ядра - этилнитрат, при этом этилнитрат медленно добавляют в суспензию каппа-каррагинана в толуоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 800 об/мин. Массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, или 1:5, или 1:2. Далее приливают хлороформ, полученную суспензию отфильтровывают и сушат при комнатной температуре. Предлагаемый способ позволяет получать нанокапсулы этилнитрата в оболочке из каппа-каррагинана. 3 пр.
Способ получения нанокапсул этилнитрата, характеризующийся тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, а в качестве ядра - этилнитрат, при этом этилнитрат медленно добавляют в суспензию каппа-каррагинана в толуоле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 800 об/мин, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, или 1:5, или 1:2, далее приливают хлороформ, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Способ получения нанокапсул метронидазола в каррагинане | 2015 |
|
RU2646482C2 |
Способ получения нанокапсул АЕКола | 2016 |
|
RU2644725C2 |
B.V.N | |||
NAGAVARMA ET AL., Different techniques for preparation of polymeric nanoparticles, ASIAN J | |||
PHARM | |||
CLIN | |||
RES., 2012, Vol | |||
Кипятильник для воды | 1921 |
|
SU5A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Авторы
Даты
2019-08-13—Публикация
2018-09-06—Подача