Установка для получения электрической энергии из сине-зеленых водорослей Российский патент 2019 года по МПК H01M8/16 

Описание патента на изобретение RU2699123C1

Изобретение относится к биоэнергетике, в частности, к извлечению электрической энергии из сине-зеленых водорослей.

Известен мембранный микробный топливный элемент (МТЭ), состоящий из анодной и катодной камер, содержащих анод и катод соответственно, разделенных ионообменной мембраной и заполненных жидкостью, анодная камера с патрубками содержит водный раствор органических веществ и микроорганизмы, окисляющие органические вещества, катод выполнен воздушным из постоянно увлажняемого материала, для создания жидкостной пленки на поверхности катода [патент РФ № 145009, МПК H01M 8/16, Н01М 8/02, C12M 1/00, 2006]. Анод и катод выполнены из углеродного войлока, с большой удельной площадью поверхности, причем в аноде выполнены отверстия, катод примыкает непосредственно к ионообменной мембране, при этом анодная камера имеет входной патрубок, расположенный в нижней ее части, и выходной патрубок, расположенный в верхней ее части.

Недостатком известного устройства является сложность конструкции.

Известен биотопливный элемент (п. № 2657289, МПК H01M 8/16, H01M 4/96, 2006), состоящий из анода и катода, выполненных из электропроводящего углеродного войлока с развитой поверхностью, при этом на поверхность анода нанесены органические вещества, обеспечивающие при эксплуатации формирование биопленки электрогенной микрофлоры на нем, а на одном из его основании, ориентированном к катоду, расположена водогазонепроницаемая пластина, повторяющая форму и имеющая размеры, соответствующие ему. Повышение удельной мощности биотопливного элемента, а также продолжительности его непрерывной работы является техническим результатом изобретения.

Недостатком известного устройства является малая производительность из-за большого межэлектродного расстояния, тем самым создается высокое сопротивление.

Известно устройство «гидравлический таран» п. № 2 468 261, МПК F04F 7/02, 2006, включающий гидроударный механизм. Гидротаран устанавливается ниже источника водоснабжения и соединяется с ним при помощи подающего трубопровода. Подъём воды осуществляется за счет гидроударного механизма. Энергию для работы, насос получает из потока протекающей воды под действием силы тяжести.

Для производства водорослей используется известное устройство солнечного биовегетария. (https://www.bretagne.bzh/upload/docs/application/pdf/2018-05/letude_sur_les_microalgues.pdf), включающее стеклянные колбы с водорослями, через которые пропускается питательная среда.

Недостатком известного устройства является то, что водоросли используют только как корм для животных и птиц или как органическое удобрение, а не для получения электроэнергии.

Наиболее близким к по технической сущности к предлагаемому изобретению является устройство для получения молекулярного водорода из сине-зеленых водорослей (п. № 2083481, МПК C01B3/02, C01B3/32, 1997), включающее трубопровод, воду, биовегетарий, источник света, сине-зеленые водоросли. Сине-зеленые водоросли фиксируются (закрепляются) на полых волокнах в биовегетарии, через него пропускается питательная среда, содержащая воду, минеральные соли и газ. Питательную среду пропускают под давлением в биореакторе 500 Торр, а отделение водорода проводят при нагревании до температуры не более 90 °С.

Недостатками известного устройства является низкий КПД устройства и высокое потребление электроэнергии на собственные нужды.

Технической задачей предполагаемого устройства является снижение затрат энергии на собственные нужды и повышение кпд устройства.

Поставленная техническая задача достигается тем, что установка для получение электрической энергии из сине-зеленых водорослей, включающая трубопровод, биовегетарий и источник света, согласно изобретению, снабжена гидротаранным механизмом и биореактором с анодом и катодом, разделенными мембраной, выполненными из электропроводного углеродосодержащего войлока, биовегетарий выполнен из светопроницаемого материала в виде колонн, соединенных трубопроводами через гидравлические затворы с гидротаранным механизмом, емкостью для воды и биореактором.

Установка для получения электрической энергии из сине-зеленых водорослей включает гидротаранный механизм 1, размещенный в проточной воде 2 реки или ручья, трубопровод 3, соединяющий гидротаранный механизм 1 с биовегетарием через гидравлический затвор 4. Биовегетарий выполнен в виде прозрачных колонн 5, в которых размещены сине-зеленые водоросли 6. Нижние торцы колонн 5 соединены трубопроводом 7 с гидравлическими затворами 4 и 8. Верхние торцы колонн 5 соединены трубопроводом 9 через сетчатый фильтр 10 с гидравлическим затвором 11. Гидравлический затвор 11 соединен с выходным трубопроводом 12, подающим очищенную воду в емкость 13. Гидравлический затвор 8 соединен с биореактором. Биореактор состоит из корпуса 14, в нижней части которого размещен гидравлический затвор 15, анода 16, катода 17 и мембраны 18. К аноду 16 и катоду 17 подсоединены токоведущие провода 19, соединенные с нагрузкой 20. В нижней части корпуса 14 биореактора размещена биомасса из сине-зеленых водорослей 6. В верхней части корпуса 14 выполнены отверстия 21. Через гидравлический затвор 15 биореактора биомасса 6 сливается в водопроницаемую емкость 22.

Биовегетарий расположен наклонно, например, под углом 25÷45 градусов для лучшего восприятия водорослями 6 источника света 23.

Установка работает следующим образом.

Вода 2 из реки или ручья проходит через гидротаранный механизм 1 поступает порциями в биовегетарий через трубопровод 3, открытый гидравлический затвор 4 и трубопровод 7. Вода 2 подается по колоннам 5 вверх. Гидравлический затвор 8 в биореактор закрыт. Вода движется через сине-зеленые водоросли 6, растущие в колоннах 5. Колонны изготовлены из прозрачного материала (стекла или пластика) для лучшего пропускания светового потока от источника света 23. Это может быть солнечный или искусственный свет. Поступающая вода 2 с растворенными в ней минеральными микроэлементами, необходимыми для роста сине-зеленых водорослей 6, усваивается растительными водорослями 6, очищая воду от растворенных в ней элементов. Далее вода 2 поднимается к самому верхнему выводу колон 5 и двигается в сторону фильтрующего элемента 10, задерживающему водоросли в био-вегитарии. Фильтрующий элемент 10 пропускает только воду 2, оставляя позади сине-зеленые водоросли 6. Далее очищенная вода 2 поступает через регулируемый гидравлический затвор 11 по трубопроводу 12 в емкость 13 для дальнейшего использования в сельскохозяйственных нуждах, например, в поилках для животных и птиц, а также для полива или технических нужд.

Вода 2, протекая по биовегетарию, питает водоросли 6 микроэлементами, свет 23 проникает через стеклянные колонны 5 и способствует росту водорослей 6. После набора критической массы, перекрывается гидравлический затвор 4, между гидротараном 1 и биовегетарием. Затем открывают гидравлический затвор 8 между биовегетарием и биореактором, водоросли 6 поступают в биореактор, под действием силы гравитации, наполняя его.

После того как биовегетарий опустошен, закрывают гидравлический затвор 8 между биовегетарием и биореактором 14, затем открывают гидравлический затвор 4 между гидротараном 1 и биовегетарием. Вода 2 снова заполняет биовегетарий. Оставшиеся клеточные структуры водорослей 6, на освободившейся территории стеклянного биовегетария относительно быстро восстанавливаются, наращивая зеленую массу.

Следующий этап происходит в биореакторе, выполненном из непроницаемого для света материала. В нижней части корпуса 14 биореактора происходит брожение водорослей под действием электрогенных анаэробных бескислородных микроорганизмов, высвобождается из биомассы свободный молекулярный водород, являющимся одним из компонентов в производстве биоэлектрической энергии. В ходе брожения высвобождаются и другие газообразные вещества, такие как метан и углекислый газ.

В биореакторе размещены два электрода анод 16 и катод 17, разделенные ионообменной мембраной 18. Анод 16 является отрицательным электродом и находится в соприкосновении с биомассой 6. Катод 17 находится с противоположной стороны ионообменной мембраны 18 в верхней части корпуса 14. Катод 17 увлажнен. В верхней части корпуса 14 биореактора расположены вентиляционные отверстия 21 для естественной вентиляции. Между молекулярным водородом и кислородом возникает разница потенциалов и вырабатывается электрический ток. Электроды 16 и 17 выполнены из электропроводного 106134угреродсодержащего войлока. К электродам 16 и 17 присоединены токоприемные антикоррозийные провода 19 с нагрузкой 20.

При истощении биомассы 6 она заменяется на новую партию и процесс продолжается, переработанный субстрат биореактора сливают через нижний гидравлический затвор 15. Отработанная биомасса из водорослей 6, можно использовать в качестве сельскохозяйственных удобрений, а выработанную электрическую энергию - для питания электроприборов.

Предложенная установка позволяет получать чистую воду, электрическую энергию и удобрения, используя энергию течения реки или ручья.

Похожие патенты RU2699123C1

название год авторы номер документа
Двухсекционная установка для получения электрической энергии из сине-зеленых водорослей 2019
  • Качан Сергей Александрович
  • Смирнов Александр Анатольевич
  • Прошкин Юрий Алексеевич
  • Измайлов Андрей Юрьевич
  • Дорохов Алексей Семенович
  • Соколов Александр Вячеславович
  • Довлатов Игорь Мамедяревич
RU2726327C1
Способ изготовления печатного источника энергии на основе цианобактерий и печатный источник энергии 2022
  • Мандрик Иван Владимирович
  • Пудова Анна Викторовна
  • Лучинин Виктор Викторович
  • Бохов Олег Сергеевич
  • Зимина Татьяна Михайловна
  • Гатауллин Артем Олегович
RU2790356C1
Биореактор для получения электрической энергии 2018
  • Качан Сергей Александрович
  • Довлатов Игорь Мамедяревич
  • Измайлов Андрей Юрьевич
  • Лобачевский Яков Петрович
  • Дорохов Алексей Семенович
  • Ковалев Дмитрий Александрович
RU2700653C1
КОЛОННА ФЕРМЕНТОЛИЗА 1999
  • Тумченок В.И.
RU2155225C1
УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ ПРОДУКТОВ СГОРАНИЯ ЭНЕРГОУСТАНОВОК, ИСПОЛЬЗУЮЩИХ ПРИРОДНЫЙ ГАЗ 2015
  • Бородулин Игорь Васильевич
  • Милюткин Владимир Александрович
  • Антонова Зоя Павловна
  • Панкеев Сергей Алексеевич
RU2599436C1
Биотопливный элемент 2017
  • Самков Андрей Александрович
  • Волченко Никита Николаевич
  • Барышев Михаил Геннадьевич
RU2657289C1
СПОСОБ УТИЛИЗАЦИИ ПРОДУКТОВ СГОРАНИЯ ЭНЕРГОУСТАНОВОК, ИСПОЛЬЗУЮЩИХ ПРИРОДНЫЙ ГАЗ 2015
  • Бородулин Игорь Васильевич
  • Милюткин Владимир Александрович
  • Антонова Зоя Павловна
  • Панкеев Сергей Алексеевич
RU2608495C1
СПОСОБ СТРОИТЕЛЬСТВА МАЛЫХ ГИДРОЭЛЕКТРОСТАНЦИЙ 2009
  • Миронов Виктор Владимирович
RU2412302C2
ФЕРМЕНТАТОР 1999
  • Тумченок В.И.
RU2151183C1
УСТАНОВКА УТИЛИЗАЦИИ СЕЛЬХОЗОТХОДОВ 1999
  • Тумченок В.И.
RU2167828C2

Иллюстрации к изобретению RU 2 699 123 C1

Реферат патента 2019 года Установка для получения электрической энергии из сине-зеленых водорослей

Изобретение относится к биоэнергетике и может быть использовано для извлечения электрической энергии из сине-зеленых водорослей. Установка для получения электрической энергии из сине-зеленых водорослей включает трубопровод 3, биовегетарий, источник света 23, гидротаранный механизм 1 и биореактор с анодом 16 и катодом 17. Анод 16 и катод 17 разделены мембраной 18 и выполнены из электропроводного углеродосодержащего войлока. Биовегетарий выполнен из светопроницаемого материала в виде колонн 5, соединенных с гидротаранным механизмом 1, емкостью 13 для воды и биореактором. Изобретение позволяет снизить затраты энергии на собственные нужды установки и повысить ее КПД. 1 ил.

Формула изобретения RU 2 699 123 C1

Установка для получения электрической энергии из сине-зеленых водорослей, включающая трубопровод, биовегетарий, источник света, отличающаяся тем, что она снабжена гидротаранным механизмом и биореактором с анодом и катодом, разделенными мембраной, выполненными из электропроводного углеродосодержащего войлока, биовегетарий выполнен из светопроницаемого материала в виде колонн, соединенных трубопроводами через гидравлические затворы с гидротаранным механизмом, емкостью для воды и биореактором.

Документы, цитированные в отчете о поиске Патент 2019 года RU2699123C1

CN 101944624 A, 12.01.2011
Пневматический калибр с изменяющейся площадью проходного сечения сопла 1960
  • Субботин В.Г.
SU145009A1
СПОСОБ ПОЛУЧЕНИЯ МОЛЕКУЛЯРНОГО ВОДОРОДА ИЗ СИНЕ-ЗЕЛЕНЫХ ВОДОРОСЛЕЙ 1992
  • Марков Сергей Арленович
RU2083481C1

RU 2 699 123 C1

Авторы

Качан Сергей Александрович

Смирнов Александр Анатольевич

Довлатов Игорь Мамедяревич

Измайлов Андрей Юрьевич

Лобачевский Яков Петрович

Дорохов Алексей Семенович

Шимон Татьяна Николаевна

Даты

2019-09-03Публикация

2019-03-05Подача