Изобретение относится к биоэнергетике, в частности к извлечению электрической энергии из сине-зеленых водорослей.
Известно, что сине зеленые водоросли высвобождают биоводород (https://cyberleninka.ru/article/n/izuchenie-mehanizmovadaptasii-tsianobakteriy-k-povyshemym-temperaturam-platforma-dlya-sozdaniya-stressoustoychivyh produtsentov. Статья Шлык-Кернер О.В., Овечкин С.В., Гасников А.С. «Изучение механизмов адаптации цианобактерий к повышенным температурам: платформа для создания стрессоустойчивых продуцентов биоводорода»).
Известен мембранный микробный топливный элемент (МТЭ), состоящий из анодной и катодной камер, содержащих анод и катод соответственно, разделенных ионообменной мембраной и заполненных жидкостью, анодная камера с патрубками содержит водный раствор органических веществ и микроорганизмы, окисляющие органические вещества, катод выполнен воздушным из постоянно увлажняемого материала, для создания жидкостной пленки на поверхности катода [патент РФ №145009, МПК Н01М 8/16, Н01М 8/02, С12М 1/00, 2013]. Анод и катод выполнены из углеродного войлока, с большой удельной площадью поверхности, причем в аноде выполнены отверстия, катод примыкает непосредственно к ионообменной мембране, при этом анодная камера имеет входной патрубок, расположенный в нижней ее части, и выходной патрубок, расположенный в верхней ее части.
Недостатком известного устройства является сложность конструкции и ограниченное использование биоэлектрохимического реактора в части используемого субстрата, а также малая величины выходного напряжения.
Известен биотопливный элемент (патент РФ №2657289, МПК Н01М 8/16, Н01М 4/96, 2017), состоящий из анода и катода, выполненных из электропроводящего углеродного войлока с развитой поверхностью, при этом на поверхность анода нанесены органические вещества, обеспечивающие при эксплуатации формирование биопленки электрогенной микрофлоры на нем, а на одном из его основании, ориентированном к катоду, расположена водогазонепроницаемая пластина, повторяющая форму и имеющая размеры, соответствующие ему. Повышение удельной мощности биотопливного элемента, а также продолжительности его непрерывной работы является техническим результатом изобретения.
Недостатком известного устройства является малая производительность из-за большого межэлектродного расстояния, тем самым создается высокое сопротивление.
Известно устройство «гидравлический таран» (патент РФ №2468261, МПК F04F 7/02, 2011), включающий гидроударный механизм. Гидротаран устанавливается ниже источника водоснабжения и соединяется с ним при помощи подающего трубопровода. Подъем воды осуществляется за счет гидроударного механизма. Энергию для работы, насос получает из потока протекающей воды под действием силы тяжести.
Для производства водорослей используется известное устройство солнечного био-вегетария. (https://www.bretagne.bzh/upload/docs/application/pdf/2018-05/letude_sur_les_microalgues.pdf), включающее стеклянные колбы с водорослями, через которые пропускается питательная среда.
Недостатком известного устройства является то, что водоросли используют только как корм для животных и птиц или как органическое удобрение, а не для получения электроэнергии.
Известно устройство для получения молекулярного водорода из сине-зеленых водорослей (патент РФ №2083481, МПК С01В 3/02, С01В 3/32, 1997), включающее трубопровод, воду, био-вегетарий, источник света, сине-зеленые водоросли. Сине-зеленые водоросли фиксируются (закрепляются) на полых волокнах в био-вегетарии, через него пропускается питательная среда, содержащая воду, минеральные соли и газ. Питательную среду пропускают под давлением в биореакторе 500 Торр, а отделение водорода проводят при нагревании до температуры не более 90°С.
Недостатками известного устройства является низкий КПД устройства и высокое потребление электроэнергии на собственные нужды.
Наиболее близким по технической сущности к заявляемому устройству является установка для получения электрической энергии из сине-зеленых водорослей, (патент РФ №2699123, МПК Н01М 8/16 СПК Н01М 8/16, 2019) включающая трубопровод, биовегетарий, источник света, гидротаранный механизм и биореактор с разделенными мембраной анодом и катодом, выполненными из электропроводного углеродосодержащего нано-структурированного войлока, колонны из светопроницаемого материала, соединенные трубопроводами через гидравлические затворы с гидротаранным механизмом и емкость для воды.
Недостатком известного устройства является низкий КПД установки.
Технической задачей предполагаемого устройства является повышение КПД устройства.
Поставленная техническая задача достигается тем, что в двухсекционной установке для получения электрической энергии из сине-зеленых водорослей, включающей трубопровод, биовегетарий, источник света, гидротаранный механизм и биореактор с разделенными мембраной анодом и катодом, выполненными из электропроводного углеродосодержащего нано-структурированного войлока, колонны из светопроницаемого материала, соединенные трубопроводами через гидравлические затворы с гидротаранным механизмом и емкость для воды, согласно изобретению, био-вегетарий снабжен анодом и катодом, разделенными мембраной, био-вегетарий и биореактор снабжены разделительной сеткой расположенной под анодом.
Изобретение поясняется чертежом, на котором представлена схема двухсекционной установки для получения электрической энергии из сине-зеленых водорослей.
Установка для получения электрической энергии из сине-зеленых водорослей выполнена в виде двух секций - био-вегетария и биореактора.
Она включает гидротаранный механизм 1, размещенный в проточной воде 2 реки или ручья, трубопровод 3, соединяющий гидротаранный механизм 1 с био-вегетерием через гидравлический затвор 4. Био-вегетарий выполнен в виде прозрачных колонн 5, в которых размещены сине-зеленые водоросли 6. Нижние торцы колонн 5 соединены трубопроводом 7 с гидравлическими затворами 4 и 8. Верхние торцы колонн 5 соединены буферной зоной 9 через сетчатый фильтр 10 с гидравлическим затвором 11. Гидравлический затвор 11 соединен с выходным трубопроводом 12, подающим очищенную воду в емкость 13. Био-вегетарий размещен в корпусе 14. Гидравлический затвор 8 соединен с биореактором.
Биореактор размещен в корпусе 15, в нижней части которого расположен гидравлический затвор 16. В верхней части корпусов 14 био-вегетария и 15 биореактора расположены анод 17, катод 18 и разделительная мембрана 19. К аноду 17 и катоду 18 подсоединены токоведущие провода 20, соединенные с нагрузкой 21. В нижней части корпуса 15 биореактора размещена биомасса из сине-зеленых водорослей 6. В верхней части корпусов 14 и 15 выполнены отверстия 22. Через гидравлический затвор 16 биореактора биомасса 6 сливается в водопроницаемую емкость 23. Под анодом 17 био-вегетария и биореактора расположена сетка 24, предохраняющая его от загрязнения биоматериалом.
Био-вегетарий расположен наклонно, например, под углом 25-45 градусов для лучшего восприятия водорослями 6 источника света 25.
Двухсекционная установка работает следующим образом.
Вода 2 из реки или ручья проходит через гидротаранный механизм 1 поступает порциями в био-вегетарий через трубопровод 3, открытый гидравлический затвор 4 и трубопровод 7. Вода 2 подается по колоннам 5 вверх. Гидравлический затвор 8 в биореактор закрыт. Вода движется через сине-зеленые водоросли 6, растущие в колоннах 5. Колонны изготовлены из прозрачного материала (стекла или пластика) для лучшего пропускания светового потока от источника света 25. Это может быть солнечный или искусственный свет. Поступающая вода 2 с растворенными в ней минеральными микроэлементами, необходимыми для роста сине-зеленых водорослей 6, усваивается растительными водорослями 6. Далее вода 2 поднимается к самому верхнему выводу колон 5 и двигается в сторону фильтрующего элемента 10, задерживающему водоросли в био-вегетарии. Фильтрующий элемент 10 пропускает только воду 2, оставляя позади сине-зеленые водоросли 6. Далее очищенная вода 2 поступает через регулируемый гидравлический затвор 11 по трубопроводу 12 в емкость 13 для дальнейшего использования в сельскохозяйственных нуждах, например, в поилках для животных и птиц, а также для полива или технических нужд.
Сине-зеленые водоросли в процессе роста вырабатывают и биоводород, которые в виде пузырьков направляются через сетку 24 к аноду 17. Катод 18 находится с противоположной стороны ионообменной мембраны 19 в верхней части корпуса 14 и увлажнен. В верхней части корпуса 14 биореактора расположены вентиляционные отверстия 22 для естественной вентиляции. Между молекулярным водородом и кислородом возникает разница потенциалов, вырабатывается электрический ток. К электродам 17 и 18 присоединены токоприемные антикоррозийные провода 20 с нагрузкой 21.
Вода 2, протекая по био-вегетарию, питает водоросли 6 микроэлементами, свет 25 проникает через стеклянные колонны 5 и способствует росту водорослей 6. После набора критической массы, перекрывается гидравлический затвор 4, между гидротараном 1 и био-вегетарием. Затем открывают гидравлический затвор 8 между био-вегетарием и биореактором, водоросли 6 поступают в биореактор, под действием силы гравитации, наполняя его.
После того как био-вегетарий опустошен, закрывают гидравлический затвор 8 между био-вегетарием и биореактором, затем открывают гидравлический затвор 4 между гидротараном 1 и био-вегетарием. Вода 2 снова заполняет био-вегетарий. Оставшиеся клеточные структуры водорослей 6, на освободившейся территории стеклянного био-вегетария относительно быстро восстанавливаются, наращивая зеленую массу.
Следующий этап происходит в биореакторе, выполненном из непроницаемого для света материала. В нижней части корпуса 15 биореактора происходит брожение водорослей 6 под действием электрогенных анаэробных бескислородных микроорганизмов, высвобождается из биомассы свободный молекулярный водород, являющийся одним из компонентов в производстве биоэлектрической энергии. В ходе брожения высвобождаются и другие газообразные вещества, такие как метан и углекислый газ.
При истощении биомассы 6 в биореакторе она заменяется на новую партию и процесс продолжается, переработанный субстрат биореактора сливают через нижний гидравлический затвор 16. Отработанную биомассу из водорослей 6, можно использовать в качестве сельскохозяйственных удобрений, а выработанную электрическую энергию - для питания электроприборов.
Сине-зеленые водоросли в процессе роста и биомасса из сине-зеленых водорослей при брожении выделяют биоводород, который используется для выработки электрической энергии. КПД установки увеличивается.
Предложенная установка позволяет получать чистую воду, электрическую энергию и удобрения, используя энергию течения реки или ручья.
название | год | авторы | номер документа |
---|---|---|---|
Установка для получения электрической энергии из сине-зеленых водорослей | 2019 |
|
RU2699123C1 |
Способ изготовления печатного источника энергии на основе цианобактерий и печатный источник энергии | 2022 |
|
RU2790356C1 |
КОЛОННА ФЕРМЕНТОЛИЗА | 1999 |
|
RU2155225C1 |
УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ ПРОДУКТОВ СГОРАНИЯ ЭНЕРГОУСТАНОВОК, ИСПОЛЬЗУЮЩИХ ПРИРОДНЫЙ ГАЗ | 2015 |
|
RU2599436C1 |
СПОСОБ УТИЛИЗАЦИИ ПРОДУКТОВ СГОРАНИЯ ЭНЕРГОУСТАНОВОК, ИСПОЛЬЗУЮЩИХ ПРИРОДНЫЙ ГАЗ | 2015 |
|
RU2608495C1 |
ФЕРМЕНТАТОР | 1999 |
|
RU2151183C1 |
УСТАНОВКА УТИЛИЗАЦИИ СЕЛЬХОЗОТХОДОВ | 1999 |
|
RU2167828C2 |
УСТАНОВКА БИОЛОГИЧЕСКОЙ ПЕРЕРАБОТКИ СЕЛЬХОЗОТХОДОВ | 1999 |
|
RU2164893C2 |
ПЛАВУЧИЙ БИОРЕАКТОР ДЛЯ ВЫРАЩИВАНИЯ МИКРОВОДОРОСЛЕЙ В ОТКРЫТОМ ВОДОЕМЕ | 2013 |
|
RU2524993C1 |
Биореактор для получения электрической энергии | 2018 |
|
RU2700653C1 |
Изобретение относится к биоэнергетике, в частности к извлечению электрической энергии из сине-зеленых водорослей. Установка для получения электрической энергии из сине-зеленых водорослей включает трубопровод, биовегетарий, источник света, гидротаранный механизм и биореактор с анодом и катодом, выполненными из электропроводного углеродосодержащего нано-структурированного войлока и разделенными мембраной, колонн из светопроницаемого материала, соединенных трубопроводами через гидравлические затворы с гидротаранным механизмом и емкость для воды. Биовегетарий снабжен анодом и катодом, разделенными мембраной, биовегетарий и биореактор снабжены разделительной сеткой, расположенной под анодом. Предложенная установка позволяет получать чистую воду, электрическую энергию и удобрения, используя энергию течения реки или ручья. Повышение кпд устройства получения электрической энергии из сине-зеленых водорослей является техническим результатом изобретения. 1 ил.
Двухсекционная установка для получения электрической энергии из сине-зеленых водорослей, включающая трубопровод, биовегетарий, источник света, гидротаранный механизм и биореактор с разделенными мембраной анодом и катодом, выполненными из электропроводного углеродосодержащего нано-структурированного войлока, колонны из светопроницаемого материала, соединенные трубопроводами через гидравлические затворы с гидротаранным механизмом и емкость для воды, отличающаяся тем, что биовегетарий снабжен анодом и катодом, разделенными мембраной, биовегетарий и биореактор снабжены разделительной сеткой, расположенной под анодом.
Установка для получения электрической энергии из сине-зеленых водорослей | 2019 |
|
RU2699123C1 |
Биотопливный элемент | 2017 |
|
RU2657289C1 |
CN 103571877 A, 12.02.2014 | |||
CN 101764241 A, 30.06.2010 | |||
Пневматический калибр с изменяющейся площадью проходного сечения сопла | 1960 |
|
SU145009A1 |
Авторы
Даты
2020-07-13—Публикация
2019-12-02—Подача