Способ неинвазивного акустического спектрального скрининга сосудов сердца Российский патент 2019 года по МПК A61B7/04 

Описание патента на изобретение RU2700471C1

Изобретение может быть использовано в медицине, а именно в кардиологии. Способ использует проведение спектрального анализа считываемых с поверхности тела пациента в области сердца шумов сосудов в выбранном диапазоне частотного спектра за заданное время наблюдения и соответствующую обработку сигнала, которые позволяют получить параметр, дающий возможность с большой достоверностью определить целесообразность выполнения селективной коронарографии (СКГ) пациентам при отборе последних на это небезобидное хирургическое вмешательство. В ходе отработки предлагаемого способа в условиях городской клинической больницы №5 в Нижнем Новгороде авторами создан прибор МимСАДАСК (Микромоторная Спектральная Акустическая Диагностика АСК - инициалы автора), реализующий предложенный способ и позволяющий неинвазивно, просто и быстро выполнять необходимые диагностические исследования. Учитывая тот факт, что по результатам проведения СКГ в текущем году в больнице оказалось более 40% больных с чистыми или гемодинамически незначимыми стенозами сосудов сердца, а стоимость каждого обследования равна 22000 рублей, нетрудно видеть, что оптимизация отбора больных на СКГ сулит немалые выгоды.

Авторам известны близкие способы и технические средства контроля поражения сосудов. В частности, способ диагностики атеросклеротического поражения сосудов поверхностной локализации представлен изобретением №1718620 А61В 7\04. В нем звуковые пульсовые колебания регистрируют в точке проекции сосуда на поверхность тела в диапазоне от 20 до 1000 Гц и для оценки склеротического поражения сосуда выбирают участок спектра частот от 180 до 230 Гц. Способ хорошо диагностирует проблемы сонной артерии, и это подтверждается рентгеноконтрастной ангиографией. Проблемы коронарного стеноза решает система электронного стетоскопа для оценки уровня ИБС у пациента, представленная патентом US-2009\0177107. Делают быстрое преобразование Фурье сигнала из четвертого левого межреберного пространства пациента по амплитуде в зависимости от частоты с выявлением его колоколообразного роста в участке спектра от 50 до 80 Гц и по превышению заданного порога судят о наличии коронарного стеноза.

Ближайшее решение проблемы стенозов представлено патентом US-6048319, где устройство реализует представленный в нем способ. Это устройство выполняет акустический скрининг для обнаружения коронарного стеноза обработкой тонов сердца, где по уровню акустической энергии в диапазоне двух октав вблизи 20 Гц во время диастолы судят о наличии и степени коронарного стеноза. Из диапазона сердечно-сосудистых звуков в интервале частот 6-45 Гц вырезают участок 15-45 Гц, считая реакцию уровня сигнала в этом интервале частот на наличие стенозов в несколько десятков раз выше более высокочастотного участка из диапазона от 17 до 120 Гц. Вычисляют среднюю диастолическую мощность в диапазоне 20-40 Гц и по ее приросту на 5 дб у больных судят о наличии ИБС. Спектральную мощность в выбираемых участках спектра вычисляют с помощью быстрого преобразования Фурье. Лучший результат при выявлении стенозов получают при комбинации спиральных мощностей на низких (20-40 Гц) и высоких частотах.

В ходе предварительной исследовательской работы авторами предполагаемого изобретения было реализовано несколько модификаций технических решений с разными типами микрофонов для съема сигналов с пациента и разными выборами частотных зон и программной обработки. В наших работах информативными оказались близкие к прототипу участки частот, а именно 22-42 Гц, 51-80 Гц и в очень редких случаях (порядка 1%) полезно учесть добавку участка частот 80-120 Гц.

Однако, авторы прототипа отмечают плохое влияние на результат диагностики факторов поглощения сигналов тканью пациента, ИМТ (индекса массы тела), пола, возраста и сопутствующих заболеваний. И даже принятие некоторых мер коррекции этих ошибок не позволяет обеспечить высокую достоверность диагностики.

Авторы предлагаемого изобретения с учетом выбора участков частотного спектра, в значительной степени коррелирующих со стенозообразованием в сосудах сердца, реализовали способ программной обработки спектральных энергий этих участков за время наблюдения, позволяющий нейтрализовать влияние многих факторов образования ошибок. В частности, вместе с вышеназванными факторами учитывается разброс уровня усиления сигналов на разных участках устройств реализации способа. Лучшим для получения наиболее информативного сигнала оказался виброакустический и, в частности, пьезоакселерометрический датчик со встроенным в него предусилителем для обеспечения лучшей помехоустойчивости. Полный диапазон рабочих частот для этого сигнала выбран от 3 до 300 Гц. На частотах выше 300 Гц не обнаружено полезных гармоник сигнала. Участок частот ниже 3 Гц отсечен частотным фильтром, чтобы исключить ненужное участие сердечного ритма. Удалось существенно повысить достоверность и точность проводимой диагностики. Для эффективной оценки влияния отклонения уровня спектральной энергии в выбранном участке частотного спектра сигнала на результаты диагностики ее прирост выражают относительной величиной ее доли в энергии полного сигнала. Для окончательной диагностики суммируются относительные доли выбранных спектральных энергий в выделенных участках частотного спектра. Из разных способов фиксации датчика на груди пациента более простым и дающим хорошую повторяемость результатов замеров оказался вариант крепления датчика липкой лентой (скотчем). Первоначально для определения нужных для диагностики участков частотного спектра весь рабочий диапазон частот был разбит на мелкие участки, и спектрограмма строилась из набора мелких полосок спектральных энергий, отнесенных к полной энергии сигнала во всем рабочем диапазоне частот за время наблюдения. Для компьютерной обработки сигнал записывали в течение 1 минуты. Это позволяло при необходимости вырезать для обработки более качественный (от помех) кусок записи с меньшим временем регистрации. Позже в приборной реализации способа достаточным оказалось время наблюдения порядка 15-30 секунд. После определения границ, коррелиующих со стенозами участков частотного спектра, стали в расчет брать спектральные энергии полных таких выбранных участков.

Для проведения статистических исследований возможностей предлагаемого способа набор наблюдений больных вели в период с января по ноябрь 2018 г. в одинаковых условиях: больных диагностировали только лежа на спине в спокойном состоянии, и датчик крепили на груди пациентов в точках V1 и V5, используемых в электрокардиографии. В дальнейшем целесообразно продолжить исследования этих диагностик в других положениях больных и с учетом наличия лекарственной терапии и динамических нагрузок. Но уже то, что удалось получить в клинической апробации способа, может позволить с большой достоверностью и высокой точностью определять отсутствие или наличие клинически значимых стенозов сосудов сердца.

Итак, решаемой здесь технической задачей является создание способа неинвазивного виброакустического спектрального скрининга сосудов сердца с повышенной достоверностью определения отсутствия или наличия стенозов в сосудах. Достигаемым техническим результатом является уменьшение погрешности оценки отклонения суммарного значения относительных величин спектральных энергий в заданных участках частотного спектра снимаемого сигнала за заданное время наблюдения относительно экспериментально установленной границы этого параметра в сторону понижения для случаев чистых сосудов, или в сторону повышения для случаев наличия стенозов в сосудах сердца. Для достижения такого результата в предложенном способе, заключающемся в том, что генерируют электрический сигнал виброакустическим датчиком, размещенным на груди пациента в области сердца в положении лежа на спине, усиливают и преобразуют сигнал в цифровую форму, с помощью быстрого преобразования Фурье формируют амплитудно-частотную спектрограмму в рабочем диапазоне частот, на ней выделяют участки частотного спектра, коррелирующие со стенозообразованием в сосудах сердца, определяют спектральную энергию в этих участках частот за время наблюдения, отличающийся тем, что оценивают отклонение суммарного значения отношений этих энергий к энергии полного сигнала всего диапазона частот от заданной границы, получаемой из экспериментальных исследований. В частности, в нашем приборе с заданным масштабированием его шкалы эта граница находится на 40%.Длительная апробация способа в условиях кардиологического отделения городской клинической больницы №5 Н.Новгорода (см. «Протокол клинической апробации…») показала, что погрешность отсутствия стенозов в сосудах сердца при показаниях прибора менее или равных 40% не превышала 1%. В окончательном решении способ реализован в устройстве, представленном на Фото 1. Это прибор МимСАДАСК. На рис. 1 приведен пример спектрограмм пациента со стенозированными сосудами сердца при выборе полного диапазона частот исследуемого сигнала от 3 до 1000 Гц с расчетом спектральных энергий на коротких частотных участках (от единиц до десятков Гц) всего спектра. Это делали для выявления коррелируюших со стенозами участков спектра. То же сделано в примере на Рис. 2, но в полном диапазоне частот от 3 до 500 Гц. Время регистрации сигнала для компьютерной обработки в этих примерах взято порядка 1 минуты. На Рис. 3 приведен пример программной реализации способа для приборного решения. Рабочий диапазон частот от 3 до 300 Гц. Выделены необходимые для диагностики стенозов два участка частот (разным цветом) для выбранного пациента. Полные результаты исследований представлены в сводной таблице «Протокола клинической апробации способа...» (прилагается к Заявке). Предлагаемый способ осуществляют следующим образом. Для оценки состояния сосудов сердца пациента с освобожденной от одежды грудной клеткой укладывают на спину. Далее для съема сигналов с точек VI и V5 последовательно приклеивают пьезоакселерометрический датчик липкой лентой (скотчем). В исследовательской части работы с датчика сигнал в течение 1 минуты записывали на японский регистратор Olympus WS-200S в формате WMA. Позже на компьютере проводили дальнейшую обработку сигнала с предварительным его преобразованием в формат WAV. В ходе длительных таких исследований выявились вышеприведенные участки спектра, активно реагирующие на наличие или отсутствие стенозов в сосудах сердца. Эти исследования легли в основу приборной реализации способа. После изготовления прибора перешли к его использованию с заданным программным временем съема сигнала, равным 15 секундам. Этого вполне достаточно. После сформировавшейся в дальнейшей апробации прибора границе раздела случаев наличия или отсутствия стенозов в сосудах сердца стало возможным достоверно говорить о чистых сосудах при суммарном относительном уровне спектральной энергии в показании прибора меньше или равном 40%. Учитывая тот факт, что статистически порядка 40% пациентов за истекший год оказались по результатам СКГ с чистыми или с гемодинамически незначимыми стенозами, можно с применением предложенного способа проводить более качественный отбор пациентов на СКГ, и избежать значительного количества проведения дорогого, небезобидного, инвазивного хирургического вмешательства у многих пациентов. Предложенный авторами способ диагностики показал лучшие по сравнению с известными решениями такой проблемы возможности по повышению достоверности и точности оценок стенозирования сосудов сердца, и может принести существенный вклад в развитие диагностик в кардиологии.

Похожие патенты RU2700471C1

название год авторы номер документа
СПОСОБ НЕИНВАЗИВНОГО ОПРЕДЕЛЕНИЯ ВНУТРИЧЕРЕПНОГО ДАВЛЕНИЯ 2016
  • Грибков Александр Владимирович
  • Канышев Альберт Сергеевич
  • Кирпичёв Александр Александрович
  • Цыплёнков Андрей Николаевич
  • Шуков Олег Владимирович
RU2621580C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ ЧЕЛОВЕКА (ВАРИАНТЫ) 2005
  • Белашенков Николай Романович
  • Лопатин Александр Иосифович
RU2303389C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ ЧЕЛОВЕКА 2005
  • Белашенков Николай Романович
  • Лопатин Александр Иосифович
  • Лопатин Денис Александрович
RU2297174C2
СПОСОБ КОМПЛЕКСНОЙ ОЦЕНКИ СОСТОЯНИЯ АРТЕРИАЛЬНОГО РУСЛА 2019
  • Зобнин Юрий Павлович
  • Кузнецов Александр Иванович
  • Савицкий Александр Николаевич
  • Парфенов Александр Сергеевич
  • Щекочихин Сергей Анатольевич
RU2731414C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЧАСТОТНОГО ДИАПАЗОНА ШУМА 2009
  • Сепери Амир А.
  • Гаребаги Араш
RU2512794C2
Способ неинвазивного определения биофизических сигналов 2020
  • Ачильдиев Владимир Михайлович
  • Грузевич Юрий Кириллович
  • Евсеева Юлия Николаевна
  • Балдин Александр Викторович
  • Спасенов Алексей Юрьевич
  • Кучеров Кирилл Владимирович
  • Рулев Максим Евгеньевич
  • Шабаев Роман Гумарович
  • Бедро Николай Анатольевич
RU2761741C1
СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ЧЕЛОВЕКА НА ОСНОВЕ АНАЛИЗА ВАРИАБЕЛЬНОСТИ РИТМА СЕРДЦА И ВАРИАБЕЛЬНОСТИ ДЛИТЕЛЬНОСТИ ДЫХАТЕЛЬНОГО ЦИКЛА 2001
  • Михайлов В.М.
RU2195163C2
СПОСОБ АНАЛИЗА ВАРИАБЕЛЬНОСТИ СЕРДЕЧНОГО РИТМА 2007
  • Кубланов Владимир Семенович
  • Костоусов Виктор Борисович
  • Попов Александр Андреевич
  • Вершинин Арсений Игоревич
RU2356495C1
СПОСОБ ДИАГНОСТИКИ СТЕНОЗА ПИЛОРОДОУДЕНАЛЬНОЙ ЗОНЫ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА 1992
  • Ворновицкий Евгений Георгиевич
RU2044513C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВНУТРИЧЕРЕПНОГО ДАВЛЕНИЯ 2006
  • Ефимов Анатолий Петрович
RU2329760C2

Иллюстрации к изобретению RU 2 700 471 C1

Реферат патента 2019 года Способ неинвазивного акустического спектрального скрининга сосудов сердца

Изобретение относится к области медицины, а именно к кардиологии. Предложен способ неинвазивного акустического спектрального скрининга сосудов сердца, заключающийся в том, что генерируют электрический сигнал акустических шумов в области сердца виброакустическим датчиком, размещаемым на груди пациента в области сердца, усиливают и преобразуют сигнал в цифровую форму, фильтруют его с выделением полного частотного диапазона и записывают последний за выбранный интервал времени съема сигнала в устройство дальнейшей обработки, формируют с помощью быстрого преобразования Фурье амплитудно-частотную спектрограмму в выбранном частотном диапазоне за выбранное время наблюдения, на ней выявляют участки частотного спектра, коррелирующие с наличием или отсутствием стенозов в сосудах сердца. С целью повышения достоверности и точности диагностики отклонение спектральной энергии в коррелирующих с патологией участках спектра частот вычисляют и представляют суммарным отношением этих энергий к полной энергии сигнала всего его рабочего диапазона частот, что исключает влияние на уровень энергии выбранных спектральных участков степени усиления сигналов на разных стадиях, их поглощения в тканях пациента, зависимого от индекса массы тела, пола, возраста и сопутствующих заболеваний, а диагностический результат определяют по отклонению полученного суммарного значения относительной доли спектрального компонента в полной энергии от заданной границы, составляющей 40%. Изобретение обеспечивает уменьшение погрешности оценки отклонения суммарного значения относительных величин спектральных энергий в заданных участках частотного спектра снимаемого сигнала за заданное время наблюдения относительно экспериментально установленной границы этого параметра в сторону понижения для случаев чистых сосудов, или в сторону повышения для случаев наличия стенозов в сосудах сердца. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 700 471 C1

1. Способ неинвазивного акустического спектрального скрининга сосудов сердца, заключающийся в том, что генерируют электрический сигнал акустических шумов в области сердца виброакустическим датчиком, размещаемом на груди пациента в области сердца, усиливают и преобразуют сигнал в цифровую форму, фильтруют его с выделением полного частотного диапазона и записывают последний за выбранный интервал времени съема сигнала в устройство дальнейшей обработки, формируют с помощью быстрого преобразования Фурье амплитудно-частотную спектрограмму в выбранном частотном диапазоне за выбранное время наблюдения, на ней выявляют участки частотного спектра, коррелирующие с наличием или отсутствием стенозов в сосудах сердца, отличающийся тем, что с целью повышения достоверности и точности диагностики отклонение спектральной энергии в коррелирующих с патологией участках спектра частот вычисляют и представляют суммарным отношением этих энергий к полной энергии сигнала всего его рабочего диапазона частот, что исключает влияние на уровень энергии выбранных спектральных участков степени усиления сигналов на разных стадиях, их поглощения в тканях пациента, зависимого от индекса массы тела, пола, возраста и сопутствующих заболеваний, а диагностический результат определяют по отклонению полученного суммарного значения относительной доли спектрального компонента в полной энергии от заданной границы, составляющей 40%.

2. Способ по п. 1 позволяет контролировать отсутствие стенозов с точностью не более 1% за время наблюдения порядка 15-30 секунд при рабочем диапазоне частот от 3 до 300 Гц с фрагментами частотного спектра, коррелирующими со стенозами сосудов сердца низкочастотным от 22 до 42 Гц, высокочастотным от 51 до 80 Гц и при наличии у пациента зажимов сосудов мышечной тканью сердца частотным участком от 80 до 120 Гц с последующим суммированием в окончательном результате их относительных уровней спектральных энергий в интервалах указанных частот к полной энергии сигнала за время наблюдения и сравнивают результат с заданной границей.

3. Способ по пп. 1 и 2 при реализации предполагает для повышения помехоустойчивости в выносном пьезоакселерометре наличие встроенного предусилителя.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700471C1

US 6048319 A 11.04.2000
Способ диагностики атеросклеротического поражения сосуда 1988
  • Гусев Евгений Иванович
  • Крупина Наталья Евгеньевна
  • Пышкина Людмила Ильинична
SU1718820A1
СПОСОБ ДИАГНОСТИКИ РАННИХ СТАДИЙ АТЕРОСКЛЕРОЗА 2007
  • Мельникова Людмила Владимировна
  • Бартош Федор Леонидович
  • Бартош Леонид Федорович
RU2350273C2
US 2009177107 A1 09.07.2009.

RU 2 700 471 C1

Авторы

Канышев Альберт Сергеевич

Королева Татьяна Викторовна

Кирпечёв Александр Александрович

Кузнецов Александр Николаевич

Григорьева Наталья Юрьевна

Шуков Олег Владимирович

Даты

2019-09-17Публикация

2018-12-26Подача