ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение в целом относится к области медицины, и более конкретно, к области медицинского мониторинга, области экстренного медицинского реагирования и так далее.
УРОВЕНЬ ТЕХНИКИ
Пожилые люди или люди с определенными хроническими заболеваниями или факторами риска, такими как тяжелое ожирение, находятся в большей зоне риска определенных медицинских экстренных ситуаций, приводящих к недееспособности, таких как падение (в особенности падения приводят к переломам костей или другой серьезной травме), сердечные приступы, острые приступы астмы или другие экстренные ситуации, связанные с дыханием, или подобное. Такие люди находятся в зоне риска быстрого приобретения недееспособности и, тем самым, неспособности обращения за медицинской помощью. Данная проблема частично может быть решена участковыми медсестрами или специалистами по уходу на дому, но их услуги дорогие, и они, как правило, не могут всегда находиться рядом с человеком группы риска. Человек группы риска может носить с собой сотовый телефон (мобильный телефон), который может обеспечить быстрое обращение за помощью. Однако мобильные телефоны занимают относительно много места и могут не находиться рядом с человеком группы риска при событии, приводящем к недееспособности, или могут быть утеряны во время данного события (например, мобильный телефон может быть уронен во время тяжелого падения). Кроме того, мобильные телефоны, как правило, требуют существенной когнитивной способности для работы с ними, и человек, страдающий от боли после тяжелого падения или испытывающий сердечный приступ или приступ астмы, может быть неспособен позвонить по мобильному телефону для обращения за помощью. Другим вариантом является помещение человека группы риска в центр сестринского ухода или другое учреждение с квалифицированным сестринским уходом, но данный вариант также является дорогим и часто противоречит желанию человека сохранять самостоятельность.
Персональная услуга экстренного реагирования (сокращенно – «ПУЭР») (англ. – «Personal Emergency Response Service», сокращенно – «PERS») представляет собой специализированную систему, разработанную для предоставления быстрого доступа к экстренной помощи людям группы риска с сохранением самостоятельности этого человека. Эти системы позволяют людям группы риска жить самостоятельно, сохраняя душевное спокойствие и зная, что при необходимости они немедленно получат экстренную помощь. В типовой услуге ПУЭР, в распоряжении человека группы риска есть кнопка запроса (англ. – «call») в форме носимой на шее подвеске или браслета. Путем нажатия на кнопку запроса, активируется спикерфон в месте проживания, с помощью которого человек группы риска устанавливает телефонный контакт с оператором в центре обработки запросов (англ. – «call center»), поддерживаемом организацией или поставщиком ПУЭР. Основываясь на телефонном номере места проживания, центр обработки запросов автоматически определяет адрес и личность человека группы риска, и эта информация автоматически отображается отвечающему оператору центра обработки запросов на компьютерном дисплее, вместе с профилем человека группы риска, извлеченным из базы данных ПУЭР. Этот личный профиль может содержать, в качестве примера, имя, местоположение, демографическую информацию, перечень известных хронических состояний человека, перечень препаратов, принимаемых человеком, идентификационную информацию ближайшей больницы, перечень контактных лиц при экстренных ситуациях (супруг/супруга, родственник, друг), информацию о враче и так далее. Располагая данной информацией, оператор центра обработки запросов обеспечен всем необходимым для работы с человеком группы риска для того, чтобы оценить состояние человека. При необходимости оператор может обратиться за надлежащей помощью, например, уведомить соседа, указанного в списке профиля ПУЭР человека, или запросить экстренный вызов (англ. – «Emergency Dispatch», сокращенно «ЭВ») для того, чтобы вызвать скорую помощь к месту проживания человека группы риска. В дополнение или в качестве альтернативы, оператор центра обработки запросов может пообщаться с человеком о медицинском случае, например, предоставляя человеку инструкции по дыхательной гимнастике для того, чтобы оправиться после приступа астмы. С другой стороны, если отвечающий оператор центра обработки запросов не имеет возможности поговорить с человеком группы риска, инициировавшим запрос, можно предположить, что человек уже стал недееспособен и, следовательно, оператор немедленно обращается в ЭП.
Далее раскрыты новые и улучшенные системы и способы, которые решают вышеупомянутые и другие проблемы.
РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
В одном раскрытом аспекте описана Персональная система экстренного реагирования (сокращенно – «ПСЭР») (от англ. – «Personal Emergency Response System»,сокращенно – «PERS»). База данных ПСЭР хранит профили клиентов ПСЭР, содержащие по меньшей мере демографическую информацию и информацию о прошлых запросах центра обработки запросов ПСЭР. Эта информация о прошлых запросах содержит информацию о прошлых событиях экстренного вызова, инициированных центром обработки запросов ПСЭР. Серверная система ПСЭР содержит серверный компьютер ПСЭР, запрограммированный на выполнение этапов, включающих:
(i) извлечение профиля клиента ПСЭР из базы данных ПСЭР;
(ii) генерирование значений набора характеристик клиента ПСЭР из извлеченного профиля, содержащего по меньшей мере одну характеристику недавнего события экстренного вызова; и
(iii) вычисление прогноза риска экстренного вызова для клиента ПСЭР на протяжении последующего промежутка времени с помощью модели риска экстренного вызова, обученной на основе профилей клиентов ПСЭР, хранимых в базе данных ПСЭР, и его прием в качестве входных данных для расчета значений набора характеристик, сгенерированных для клиента ПСЭР на этапе (ii).
В другом раскрытом аспекте описана Персональная система экстренного реагирования (ПСЭР). Серверная система ПСЭР содержит серверный компьютер ПСЭР и базу данных ПСЭР, хранящую профили клиентов ПСЭР, содержащие по меньшей мере демографическую информацию и информацию о прошлых запросах центра обработки запросов ПСЭР. Информация о прошлых запросах содержит информацию о прошлых событиях экстренного вызова, инициированных центром обработки запросов ПСЭР. Компьютер центра обработки запросов ПСЭР расположен в центре обработки запросов ПСЭР и содержит отображающий элемент. Предусмотрено носимое устройство запроса, вместе со спикерфоном, который активируется беспроводным образом носимым устройством запроса, для соединения с центром обработки запросов ПСЭР, тогда как профиль клиента ПСЭР, осуществляющего запрос, извлекается из базы данных ПСЭР серверным компьютером ПСЭР и отображается на отображающем элементе компьютера центра обработки запросов ПСЭР. Предусмотрено мобильное устройство, на которое загружено приложение для мобильного устройства, которое программирует мобильное устройство на прием и отображение информации, относящейся по меньшей мере к одному событию экстренного вызова, инициированному центром обработки запросов ПСЭР для клиента ПСЭР.
В другом раскрытом аспекте описан способ, выполняемый вместе с услугой Персональной Системы Экстренного Реагирования (ПСЭР), при котором активация носимого устройства запроса клиентом ПСЭР обуславливает соединение спикерфона с центром обработки запросов ПСЭР для того, чтобы обеспечить возможность общения клиента ПСЭР с оператором центра обработки запросов ПСЭР, тогда как профиль клиента ПСЭР извлекается из базы данных ПСЭР и информация, содержащаяся в профиле, отображается на отображающем элементе в центре обработки запросов ПСЭР. Способ включает:
(i) генерирование значений набора характеристик клиента ПСЭР с помощью компьютера из профиля клиента;
(ii) вычисление прогноза риска для клиента ПСЭР на протяжении последующего промежутка времени на основании сгенерированных значений набора характеристик клиента ПСЭР с помощью компьютера; и
(iii) отображение вычисленного прогноза риска для клиента ПСЭР на отображающем элементе вместе с отображенной информацией, содержащейся в профиле.
Одно преимущество заключается в предоставлении услуги ПСЭР с прогностической оценкой риска, например, для оценки риска на протяжении последующего промежутка времени для клиента ПСЭР, нуждающегося в экстренном вызове, или для оценки риска на протяжении последующего промежутка времени клиента ПСЭР, нуждающегося в помещении в штатное медицинское учреждение
Другое преимущество заключается в предоставлении компьютера оператора центра обработки запросов для услуги ПСЭР, в котором компьютерный дисплей обеспечивает более эффективную и быструю оценку состояния клиента ПСЭР, осуществляющего запрос.
Другое преимущество заключается в предоставлении «обычным лицам, осуществляющим уход», таким как родственники, друзья, соседи, участковые медсестры или т.п., информации из профиля ПСЭР клиента ПСЭР посредством мобильного устройства. При необходимости, прогностическая оценка риска также предоставляется посредством мобильного устройства.
Другое преимущество заключается в предоставлении информации в отношении клиентов ПСЭР с наивысшим риском экстренного вызова (или каким-либо иным риском).
Другое преимущество заключается в предоставлении предварительной оценки количества событий экстренного вызова на протяжении последующего промежутка времени.
Данный вариант реализации может обеспечить одно, два, больше или все из вышеуказанных преимуществ, и/или может обеспечить другие преимущества, что станет очевидным специалисту в данной области техники после ознакомления и понимания настоящего раскрытия.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение может принимать форму различных компонентов и размещений, а также различных этапов и порядков этапов. Чертежи служат лишь с целью иллюстрации предпочтительных вариантов реализации и их не следует рассматривать в качестве ограничения изобретения.
На фигуре 1 в виде диаграммы изображена Персональная система экстренного реагирования (ПСЭР), содержащая прогнозирующий модуль оценки экстренного вызова (ЭВ), как описано в настоящем документе.
На фигуре 2 в виде диаграммы изображен подходящий вариант реализации прогнозирующего модуля оценки ЭВ по фигуре 1.
На фигуре 3 в виде диаграммы изображен процесс обучения модели риска ЭВ, должным образом выполняемый прогнозирующим модулем оценки ЭВ по фигурам 1 и 2.
На фигуре 4 в виде диаграммы изображена обработка абонентского запроса центра обработки запросов ПСЭР по фигуре 1, в том числе, работа прогнозирующего модуля оценки ЭВ по фигурам 1 и 2, вместе с обработкой абонентского запроса.
На фигуре 5 в виде диаграммы изображен процесс анализа группы ПСЭР, должным образом выполняемый прогнозирующим модулем оценки ЭВ по фигурам 1 и 2.
На фигуре 6 изображена градуировочная кривая истинных результатов в сравнении со спрогнозированным риском ЭВ для санитарного транспорта для последующего промежутка времени, составляющего 30 дней, сгенерированным с помощью представленной в качестве примера модели риска ЭВ, описанной в настоящем документе.
На фигуре 7 представлен график рабочей кривой приемника (от англ. – «Receiver Operating Curve», сокращенно «ROC») для проверочной когорты, сгенерированной во время проверки представленной в качестве примера модели риска ЭВ.
На фигуре 8 изображен отчет, показывающий абонентов (т.е. «пациентов») с высоким риском ЭВ, который может быть сгенерирован модулем оценки ЭВ по фигурам 1 и 2.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
В настоящем документе раскрыты услуги Персональной системы экстренного реагирования (ПСЭР) (и/или вспомогательное оборудование и/или инфраструктура), которые обеспечивают прогностические предварительные оценки вероятности (в течение некоторого промежутка времени) того, что человеку группы риска, которому предоставлена услуга ПСЭР, потребуется экстренный вызов (ЭВ). Данный прогноз риска ЭВ обеспечивает количественную оценку риска ЭВ для человека, которому предоставлена услуга ПСЭР, которая может быть использована различным образом. Например, прогноз риска ЭВ для абонента, вызывающего центр обработки запросов, может быть вычислен и отображен на дисплее, просматриваемом оператором центра обработки запросов при обработке запроса. Эта информация содействует оператору центра обработки запросов при принятии важного решения, вызывать ли ЭВ, и может использоваться для других целей, таких как приоритезация входящих запросов. В другом варианте применения, прогнозы риска ЭВ рассчитываются для всех абонентов для услуги ПСЭР, и результаты анализируются статистически для предварительной оценки количества событий ЭВ, которые могут произойти в течение промежутка времени, и/или результаты сортируются по значению риска для идентификации абонентов с наиболее высоким риском потребности в ЭВ, так что для этих абонентов, группы высокого риска, может быть предусмотрено профилактическое вмешательство. В некоторых вариантах реализации оценка риска ЭВ выполняется для различных типов экстренной помощи, например, количественный прогноз риска ЭВ может быть рассчитан для каждого из следующих случаев оказания экстренной помощи: ЭВ при падении; ЭВ при сердечном приступе; ЭВ при расстройстве дыхания или т.п. Данная более подробная информация о прогнозе ЭВ может быть использована, например, для предупреждения персонала скорой медицинской помощи о наиболее вероятном типе экстренной помощи при событии, когда абонент не способен сообщить данную информацию оператору центра обработки запросов.
Используемый в настоящем документе термин «экстренный вызов» или «ЭВ» подразумевает реагирование на медицинскую экстренную ситуацию, при которой карета скорой помощи или транспортное средство для скорой медицинской помощи (сокращенно «СМП») (от англ. – «Emergency Medical Service», сокращенно «EMS») подается к месту проживания человека, нуждающегося в экстренной помощи, когда персонал СМП, перемещающийся в транспорте СМП оценивает состояние человека, переносящего медицинскую экстренную ситуацию. Кроме того, событие ЭВ может включать в себя использование транспортного средства, предоставленного для СМП, для доставки человека в местную больницу, если это обосновано с медицинской точки зрения. В иллюстративных вариантах реализации, представленных в настоящем документе, событие ЭВ рассчитывается, если карета скорой помощи или другой транспортное средство скорой помощи подается к месту проживания, независимо от того, был ли человек фактически доставлен в больницу или нет.
В альтернативных вариантах реализации, событие ЭВ может быть рассчитано только, если человек фактически доставлен в больницу (то есть, в таких альтернативных вариантах реализации, событие ЭВ не рассчитывается, если карета скорой помощи предоставлена, но персоналом СМП, прибывшим в карете скорой помощи, определено, что человека не нужно доставлять в больницу). В других дополнительных альтернативных вариантах реализации, расчеты производятся в обоих случаях: расчет событий ЭВ, при которых транспортное средство скорой помощи доставляется к месту проживания, и (наименьший) расчет поднабора тех событий ЭВ, при которых человек фактически доставлен в больницу.
Услуга ЭВ может предоставляться органами местного самоуправления (например, города, округа и так далее) или частным предприятием, таким как частная служба скорой медицинской помощи, заключившим договор с городом на предоставление услуги СМП. В типовой последовательности, событие ЭВ инициируется путем набора специально предусмотренного телефонного номера экстренной помощи, как, например, набор «911» в Северной Америке или набор «112» в Европе. В случае, если ЭВ инициировано центром обработки запросов ПСЭР, оператор центра обработки запросов может использовать известные «911» или «112» или может использовать другую линию связи с услугой СМП. Оператору центра обработки запросов может потребоваться предоставить инструкции персоналу СМП в отношении личности и адреса человека группы риска, нуждающегося в экстренной помощи, и/или может предоставить дополнительную информацию, такую как характер экстренной ситуации, известные хронические состояния или т.п.
В иллюстративных примерах, представленных в настоящем документе, человек группы риска, которому предоставлена услуга ПСЭР, для удобства именуется, как «абонент ПСЭР» или просто «абонент». Это отражает общую реализацию, такую как абонентская услуга ПСЭР, при которой абонент (или друг, или родственник абонента) уплачивает регулярную (например, ежемесячную) абонентскую плату для сохранения текущего доступа к услуге ПСЭР. Абонентская плата может также включать в себя регулярную арендную плату за оборудование, такое как спикерфон и носимое устройство запроса. Несмотря на то, что данная терминология используется для удобства, следует понимать, что «абонент» может иметь другие договоренности или связь с услугой ПСЭР – например, услуга ПСЭР может быть предоставлена абоненту бесплатно, например, если услуга ПСЭР бесплатно предоставляется гражданам группы риска в качестве составной части местной услуги СМП; или услуга ПСЭР может предоставляться медицинской страховой компанией или другим частным юридическим лицом, или вооруженными силами для военнослужащих или военных ветеранов, находящихся в группе риска; или т.п. Более общим термином является «клиент ПСЭР» или просто «клиент», который охватывает абонентов ПСЭР, приведенных в качестве примера, и дополнительно охватывает подверженных риску людей, обслуживаемых услугой ПСЭР в рамках других договоренностей, таких как спонсирование органами местного самоуправления, страховой компанией, работодателем, или другим частным юридическим лицом, организацией военных ветеранов, или т.п.
Ссылаясь на фиг. 1, инфраструктура услуги ПСЭР, представленная в качестве примера, содержит следующие компоненты: носимое устройство 10 запроса для каждого абонента ПСЭР; коммуникатор или спикерфон 12 для каждого места 14 проживания абонента; серверную систему 16 ПСЭР, а также центр 18 обработки запросов. На представленной в качестве примера фиг. 1 изображено одно место 14 проживания с одним коммуникатором 12 и одно носимое устройство 10 запроса, подходящим образом носимое абонентом (не изображен), в иллюстративных целях. Однако следует понимать, что системой ПСЭР обслуживается группа абонентов, которые живут в местах проживания, рассредоточенных по географической области, обслуживаемой ПСЭР, где у каждого абонента имеется свое носимое устройство 10 запроса и соответствующий коммуникатор 12. Если место 14 проживания достаточно большое, в месте проживания может быть предусмотрено два или более блока коммуникатора для обеспечения полного покрытия всех областей, к которым имеется доступ у абонента. Носимое устройство 10 запроса, представленное в качестве примера, представляет собой подвеску с крупной, легко нажимаемой кнопкой 22 запроса, которая (подвеска) носится на шее, как ожерелье 24 (частично изображено). Более обобщенно, носимое устройство запроса может иметь любую подходящую форму для ношения, такую как представленная в качестве примера подвеска, носимая на шее, или браслет, или т.п., и содержит простой и эффективный механизм, такой как представленная в качестве примера нажимная кнопка 22 для активации запроса центра 18 обработки запросов ПСЭР. Устройство 10 запроса подходящим образом питается от батареи для обеспечения полной портативности. Несмотря на то, что приведенная в качестве примера (предпочтительно, крупная) нажимная кнопка является удобным механизмом активации запроса, предполагаются другие механизмы активации запроса, такие как голосовой механизм активации. Также предполагается предоставление носимого устройства запроса, которое автоматически активирует запрос на основе некоторого ввода. Например, носимое устройство 10 запроса может содержать акселерометр, и устройство 10 запроса активирует запрос после обнаружения акселерометром быстрого ускорения, направленного вниз, (т.е. внезапного падения) абонента, на котором надето устройство 10 запроса. При необходимости, носимое устройство 10 запроса обладает другими характеристиками, такими как водонепроницаемость, при необходимости, так что его можно надевать в ванной или душе. Нажатие на кнопку 22 запроса или активация устройства 10 запроса другим способом обуславливает излучением устройством 10 запроса беспроводного сигнала 26 (например, радиочастотного сигнала ближнего действия), который принимается коммуникатором 12 для инициирования запроса центра 18 обработки запросов ПСЭР. При необходимости, носимое устройство 10 запроса может содержать другие кнопки или вводы пользователя, такие как свет светодиодного индикатора или жидкокристаллический дисплей, предоставляющий информацию, такую как уровень заряда батареи; однако устройство 10 запроса, предпочтительно, выполнено очень простым в эксплуатации (например, в некоторых вариантах реализации предусмотрена только лишь кнопка 22 запроса, представленная в качестве примера), так что абонент может эксплуатировать его даже при существенном медицинском недомогании или даже при когнитивной недостаточности (например, медицинского происхождения или вызванной болью).
Коммуникатор или спикерфон 12 в месте 14 проживания обеспечивает функциональность внутренней телефонной связи. При активации устройством 10 запроса, коммуникатор 12 автоматически устанавливает линию 30 связи с центром 18 обработки запросов ПСЭР, через которую абонент может связываться с оператором центра обработки запросов. В некоторых конфигурациях услуги ПСЭР, линия 30 связи представляет собой телефонную связь по наземной линии связи. Данный подход обладает преимуществом, заключающемся в том, что центр 18 обработки запросов ПСЭР может автоматически идентифицировать абонента на основе телефонного номера, закрепленного за коммуникатором 12. В других вариантах реализации, линия 30 связи представляет собой линию беспроводной связи, например, через беспроводную сотовую сеть 3G или 4G. Предполагаются также различные комбинации, такие как наличие множества коммуникаторов, распространенных по месту проживания, каждый из которых беспроводным способом соединен с основной базовой станцией по WiFi или другой протокол беспроводной связи, при этом основная базовая станция далее соединена с центром обработки запросов по городской телефонной линии связи. Коммуникатор 12 содержит динамик 32, который имеет достаточную мощность для того, чтобы абонент мог его услышать, пребывая в жилой зоне, находящейся в дальности действия коммуникатора 12, и, подобным образом, содержит микрофон (не изображен), который захватывает голос абонента. Как уже было указано, при необходимости, в месте 14 проживания может находиться более одного коммуникатора для обеспечения полной дальности действия. В некоторых вариантах реализации, микрофон находится в носимом устройстве 10 запроса и сигнал микрофона беспроводным способом передается от устройства запроса на коммуникатор 12 посредством подходящей модуляции беспроводного сигнала 26.
В центре 18 обработки запросов ПСЭР линия 30 связи устанавливается с помощью компьютера 40, приведенного в качестве примера, который используется оператором центра обработки запросов (не изображен). В целях иллюстрации, также изображены дополнительные компьютеры 41, 42 оператора для изображения в виде диаграммы того, что центр 18 обработки запросов, как правило, содержит некоторое количество операторов, каждый из которых закреплен за компьютером 40, 41, 42, достаточное для обеспечения того, чтобы для обработки запроса абонента всегда был оператор центра обработки запросов. Необходимое количество операторов центра обработки запросов и, следовательно, необходимое количество компьютеров 40, 41, 42, зависит от количества абонентов ПСЭР, закрепленных за центром 18 обработки запросов, а также статистической частоты и длительности запросов абонента. Центр 18 обработки запросов ПСЭР содержит систему маршрутизации запросов (не изображена), которая направляет каждый входящий запрос абонента на компьютер доступного оператора центра обработки запросов. Компьютер 40 содержит отображающий элемент или отображающее устройство 44, микрофон (не изображен) для захвата голоса оператора при запросе и динамик (не изображен), с помощью которого слышен голос абонента, так чтобы обеспечить двунаправленную беседу, осуществляемую между вызывающим абонентом и оператором центра обработки запросов, обрабатывающим запрос. После приема запроса, блок или модуль идентификации вызывающего абонента (не изображен) идентифицирует телефонный номер вызывающего блока 12 коммуникатора. Если линия 30 связи не является телефонной линией, то, предпочтительно, используется другая автоматизированная система идентификации, подходящая для используемого типа линии связи. Автоматически обнаруживаемый идентификатор (например, телефонный номер, присвоенный идентификатору вызывающего абонента) отправляется серверной системе 16 ПСЭР.
Серверная система 16 ПСЭР подходящим образом реализована посредством серверного компьютера 50 и базы 52 данных ПСЭР, причем последняя из них может быть выполнена в виде RAID-массива дисков (от англ. – «Redundant Array of Independent Disks» – «избыточный массив независимых дисков»), системы многократных жестких дисков с резервированием, или т.п. Аппаратное обеспечение 50, 52 для вычислений и хранения может быть реализовано и расположено различным образом, таким как в форме серверного компьютера, находящегося в месте расположения центра 18 обработки запросов ПСЭР, или находящегося дистанционно от центра 18 обработки запросов ПСЭР, или может быть реализовано в качестве распространенной или облачной вычислительной архитектуры при реализации серверного компьютера 50 в качестве множества компьютеров, подключенных к сети или взаимосвязанных между собой иным функциональным образом. Серверный компьютер 50 запрограммирован на выполнение этапа хранения, извлечения и обработки данных ПСЭР, как описано в настоящем документе. Данный этап включает в себя первоначальную настройку абонента (не изображена на фиг. 1), включающую настройку первоначальную информацию профиля абонента (например, имя, адрес, номер телефона, контактная информация, информация о враче, демографическая информация, такая как возраст, пол и так далее, хронические заболевания, известные на момент первоначальной подписки, и так далее). Информация для настройки может быть получена из различных источников, таких как формы подписки, заполненные абонентом (или другом или родственником абонента с разрешенным доступом к информации об абоненте, или с использованием онлайн-форм, заполненных консультантом по подписке системы ПСЭР при консультации с абонентом). При необходимости, некоторая информация для настройки получена автоматически из доступной(ых) базы(баз) данных – например, медицинская информация о пациенте, при необходимости, автоматически извлекается серверной системой 16 ПСЭР из одной или более баз 54 данных электронных медицинских карт («ЭМК») (от англ. – «Electronic Medical Record», сокращенно – «EMR»). Данная функциональность далее графически изображена на фиг. 1 в качестве модуля 56 извлечения профиля абонента, модуля 58 ввода случая с абонентом и прогнозирующего модуля 60 оценки риска экстренного вызова (сокращенно – «ЭВ») (от англ. – «emergency dispatch», сокращенно – «ED»). При реагировании на приведенный в качестве примера запрос, телефонный номер линии 30 связи, определенный по идентификатору вызывающего абонента, отправляется на модуль 56 извлечения профиля абонента, который осуществляет доступ к базе 52 данных ПСЭР для извлечения профиля абонента, соответствующего этому телефонному номеру, и отправки извлеченного профиля абонента компьютеру 40, где текущая информация об абоненте отображается на устройстве или отображающем элементе 44 для просмотра оператором центра обработки запросов. Данная информация может содержать, например: имя абонента (в том числе, любой «псевдоним»); демографическую информацию (пол, возраст, национальность); адрес места проживания; тип места проживания (одноэтажное, многоэтажное и т.д.); история прошлых случаев; время с момента последнего ЭВ (при наличии); количество событий ЭВ за прошедшие два года и т.д. Информация об абоненте также передается на прогнозирующий модуль 60 оценки риска ЭВ, который генерирует прогноз риска ЭВ для вызывающего абонента, и этот прогноз риска ЭВ также отправляется компьютеру 40 для отображения на устройстве или отображающем элементе 44. Таким образом, оператор центра обработки запросов имеет доступ к данной информации, в том числе к прогнозу риска ЭВ вызывающего абонента для того, чтобы быть обеспеченным всем необходимым для работы с вызывающим абонентом с целью оценки медицинского состояния абонента и принятия решения в отношении соответствующего заключения о запросе.
Если оператор центра обработки запросов определяет, что ЭП представляет собой подходящее действие, то оператор обращается в диспетчерский центр 70 скорой медицинской помощи (сокращенно – «СМП») (от англ. – «Emergency Medical Service», сокращенно – «EMS»), который направляет карету 72 скорой помощи или другой транспорт СМП к месту 14 проживания. Линия 74 связи, по которой оператор центра обработки запросов обращается в диспетчерский центр 70 СМП может представлять собой экстренный номер телефона (например, «911» в Северной Америке или «112» в Европе), или может представлять собой специальную проводную и/или беспроводную линию связи с диспетчерским центром 70 СМП, такую как специальную наземную линию связи. В типичных протоколах реагирования ПСЭР, если оператор центра обработки запросов не имеет возможности эффективной связи с вызывающим абонентом по линии 30, то будет инициирована ЭВ. Если эффективная связь возможна, то решение о том, инициировать ли ЭВ или нет, будет зависеть от медицинской оценки, выполненной оператором на основе разговора.
Независимо от типа заключения о запросе, оператор центра обработки запросов вводит отчет о случае с абонентом для запроса с помощью компьютера 40, который (отчет) сохраняется с помощью модуля 58 ввода случая с абонентом в базу данных 52 ПСЭР, и, более конкретно, в профиль или запись абонента в базе 52 данных ПСЭР. Для целей проверки, такой отчет о случае, как правило, подается оператором, даже если запрос окажется случайным запросом (то есть запрос был совершен абонентом непреднамеренно путем случайного нажатия кнопки 20 запроса на своем устройстве 10 запроса), или регистрационным запросом (то есть запрос был совершен абонентом намеренно с целью проверки функционирования линии 30 связи ПСЭР, или с целью привлечения оператора центра обработки запросов в разговор, или с какой-либо другой целью, которая не относится к экстренной медицинской помощи), или запросом, который не требует ЭВ или другого существенного восстановительного действия. Как правило, отчет о случае содержит информацию, такую как дата/время запроса, длительность, идентификационную информацию оператора (как правило, данная информация записывается автоматически), тип запроса (регистрационный, случайный, связанный с медицинским состоянием), и информация о заключении о запросе (такая как информация о запросе ЭВ, если он был совершен, или утверждение о том, что обратились к конкретному соседу, если это представляло собой действие, или т.п.). Информация о случае добавляется в профиль абонента.
Как описано выше, прогноз риска ЭВ, генерируемый прогнозирующим модулем 60 оценки риска ЭВ, преимущественно предоставляется оператору центра обработки запросов с помощью компьютера 40 для его ведома при обработке запроса абонента. В дополнение или в качестве альтернативы, прогноз риска ЭВ может использоваться в других целях. На приведенной в качестве примера фиг. 1, прогнозирующий модуль 60 оценки риска ЭВ может запустить отчет по рискам ЭВ по всем абонентам, обслуживаемым ПСЭР, для использования пунктом 76 управления услугой ПСЭР. Например, отчет по рискам ЭВ может предоставлять обезличенную информацию о прогнозе риска ЭВ в форме гистограммы распределения или кривой риска ЭВ, и/или может содержать перечень тех абонентов, прогноз риска ЭВ которых выше выбранного порогового значения, так что для тех абонентов, для которых риск необходимости в экстренном вызове высок, может быть предпринято профилактическое действие.
В другом варианте применения прогноза риска ЭВ, профиль абонента вместе с прогнозом риска ЭВ могут быть предоставлены родственнику, осуществляющему уход лицу или другу с помощью мобильного устройства 80, на котором загружено мобильное приложение («app») 82 (графически изображенное на фиг. 1 в виде значка, изображающего приложение 82). Например, мобильное устройство 80 может представлять собой сотовый телефон, планшет или тонкий ПК, или т.п. Если мобильное приложение 82 предоставляет информацию об абоненте посторонним лицам, некоторая информация из профиля абонента, при необходимости, может быть опущена в соответствии с действующими правилами конфиденциальности, например, HIPAA в Соединенных Штатах Америки. (Подобным образом, следует понимать, что ожидается, что услуга ПСЭР в целом соответствует HIPAA или другим действующим правилам по безопасности медицинских данных, например, путем получения информированного согласия абонента перед выявлением и сохранением медицинской информации об абоненте).
Ссылаясь на фиг. 2, описана приведенная в качестве примера реализация прогнозирующего модуля 60 оценки риска ЭВ. Модуль 90 обучения модели риска ЭВ обучает модель 92 риска ЭВ с помощью данных обучения, содержащих профили абонентов, извлеченные из базы 52 данных ПСЭР. В некоторых вариантах реализации, представленных в настоящем документе в качестве примера, для обучения модели 92 риска ЭВ используется модель множественной логистической регрессии; однако по существу может быть использован любой другой тип модели, такая как модель множественной линейной регрессии, наивная байесовская модель, нейронная сеть, или т.п. Обученная модель 92 риска ЭВ используется модулем 94 предварительной оценки риска ЭВ для предоставления прогноза риска ЭВ абоненту на основе текущего профиля абонента, извлеченного из базы 52 данных ПСЭР. При необходимости, предоставлен модуль 96 статистики риска ЭВ для выполнения статистического или другого анализа прогнозов риска ЭВ абонентов в базе данных ПСЭР для использования пунктом 76 управления ПСЭР или абонентами услуги ПСЭР.
Ссылаясь на фиг. 3, описан представленный в качестве примера способ обучения, который подходящим образом выполняется модулем 90 обучения модели риска ЭВ. На этапе 100 обучающий набор 102 данных профилей абонентов извлекается из базы 52 данных ПСЭР. Этап 100, при необходимости, может включать в себя обезличивание данных, фильтрацию (например, для удаления слишком кратких профилей абонентов, например, абонента, который подписался на услугу ПСЭР только лишь месяц назад, может не иметь достаточно истории, полезной для обучения), или т.п. Профили абонентов могут использоваться в качестве аннотированных обучающих данных следующим образом (причем предполагается, что промежуток времени прогноза составляет тридцать дней): для каждого абонента, если ЭВ была предоставлена для данного абонента в течение последних 30 дней, то абонент маркируется, как положительный образец; если в течение последних 30 дней для данного абонента ЭВ не была предоставлена, то абонент маркируется, как отрицательный образец. Для каждого абонента генерируется набор характеристик. Некоторые представленные в качестве примера характеристики могут включать в себя некоторые или все из следующего: демографическая информация об абоненте (возраст, пол, национальность, и так далее); самостоятельно сообщенные медицинские состояния; медицинские состояния, полученные из базы 54 данных электронных медицинских карт (сокращенно – «ЭМК») (от англ. – «Electronic Medical Record», сокращенно – «EMR») (если доступна); временной интервал с момента последнего предоставления ЭВ абоненту; последняя госпитализация абонента; количество запросов ЭВ для абонента на протяжении прошедшего промежутка времени (например, 2 года в некоторых иллюстративных примерах); количество дней госпитализации в прошедшем промежутке времени; тип места проживания (более вероятно, что падение абонента может быть серьезным в многоэтажном месте проживания, по сравнению с одноэтажным местом проживания); и т.п. Характеристики, такие как временной интервал с момента последней ЭВ, или временной интервал с момента последней госпитализации, количественно выражают время с момента последнего такого события и называются в настоящем документе «характеристиками недавних событий». Характеристики, такие как количество запросов ЭВ или количество дней госпитализации, количественно выражают количество и частоту таких событий (как правило, в течение некоторого прошедшего промежутка времени, например, в течение последних двух лет) и называются в настоящем документе «характеристиками частоты». Предполагается также регулировка характеристиками с помощью различных способов, таких как вычитание более старых запросов ЭВ при вычислении значения характеристики частоты ЭВ.
В дополнение к указанным выше характеристикам, экспериментами были продемонстрированы некоторые дополнительные характеристики, которые проявляют удивительное соотношение с риском ЭВ, и которые, таким образом, подходящим образом используются в качестве характеристик в обучающем наборе 102 данных. К одной такой характеристике относится количество регистрационных запросов, осуществленных абонентом. Регистрационный запрос представляет собой запрос, намеренно выполненный абонентом с целью проверки функционирования линии 30 связи или с целью вовлечения оператора центра обработки запросов в разговор, или с некоторой другой целью, которая не связана с экстренной медицинской помощью. Было обнаружено, что высокая частота регистрационных запросов, выполненных абонентом, прямо соотносится с последующими событиями ЭВ для абонента. Без ограничения какой-либо теорией функционирования, считается, что высокая частота регистрационных запросов может указывать на высокий уровень беспокойства со стороны абонента. В некоторых случаях, это беспокойство может основываться на физиологии, например, по причине затруднения дыхания, ранних проблем с сердцем, или т.п., которые могут (еще) не быть осознанно замечены абонентом.
В конкретном варианте реализации, абонента просят зарегистрироваться, когда он/она получил/получила специальный сигнал, или на заранее определенных равномерных временных точках регистрации. Во время регистрации, устанавливается голосовая связь с центром обработки запросов или абонентом выполняется конкретное действие для того, чтобы дать понять, что все в порядке. Характеристики для оценки риска ЭВ могут представлять собой соблюдение абонентом этих «правил регистрации». Предполагается, что абоненты, с которыми все в порядке, будут соблюдать эти правила или даже пропустят регистрацию, тогда как беспокойные абоненты могут зарегистрироваться больше раз, чем необходимо, для уверенности в том, что помощь, при необходимости, находится в пределах доступности.
Другой обнаруженной характеристикой, которая связана с риском ЭП и, следовательно, подходящим образом используется в качестве характеристики в обучающем наборе данных, являются случайные запросы, которые непреднамеренно осуществляются абонентом посредством случайного нажатия на кнопку 20 запроса на своем устройстве 10 запроса. И вновь, без ограничения какой-либо конкретной теорией функционирования, предполагается, что высокая частота случайных запросов может указывать на усиление забывчивости или деменцию со стороны абонента. Такое состояние может приводить к увеличению вероятности несчастных случаев (например, серьезных падений), приводя к событиям ЭВ, или может иметь физиологическую основу (например, пониженное кровяное давление ввиду проблемы с сердцем, или пониженное насыщение крови кислородом ввиду проблемы с дыханием), что может приводить к событию ЭВ.
Если носимое устройство 10 запроса содержит акселерометр или другой «автоматический детектор падения», это может, при необходимости, использоваться для генерирования дополнительных характеристик. Например, ложные тревоги с автоматического детектора падения могут использоваться в качестве характеристики, представляющей собой «подобные падению» или потенциально опасные ситуации.
Далее со ссылкой на фиг. 3, представленный в качестве примера модуль обучения использует этап 104 разбиения набора данных перекрестной проверки на достоверность, которая разбивает обучающие данные на поднабор обучения и поднабор проверки. На этапе 106 обучения, поднабор обучения используется для обучения модели множественной логистической регрессии с зависящими от времени ковариатами (или, в других вариантах реализации, на этапе обучения используется модель линейной или логистической регрессии, деревья решений, адаптивное улучшение, «случайный лес», или другой тип алгоритма обучения модели) для генерирования обученной модели 108 риска ЭВ. В иллюстративных примерах, представленных в настоящем документе, модель множественной логистической регрессии использовалась для вычисления вероятности приближающейся ЭВ. Модель логистической регрессии описывает, в какой степени различные факторы увеличивают или уменьшают риск (в данном случае, для транспорта ЭВ). Логарифмическая формула регрессии для абонента, обозначенного индексом может быть записана, как:
где для абонента представляет собой вероятность наличия ЭВ в следующие 30 дней и вычисляется с учетом коэффициентов по формуле регрессии. Свободными членами обозначены значения для абонента характеристик k из набора характеристик, а коэффициенты представляют собой коэффициенты для характеристик из набора характеристик, которые оптимизированы этапом 106 обучения для получения модели, прогнозирующей риск ЭВ. И вновь, это является лишь одной моделью риска ЭВ, представленной в качестве примера, и могут быть использованы модели других исполнений, такие как модель линейной регрессии, дерево решений, модель адаптивного улучшения, модель «случайного леса», или т.п.
В целом, модель составлена для (1) приема значений для набора характеристик, полученных из профиля абонента, в качестве входных данных, и (2) вывода прогноза риска ЭВ, представляющего собой значение, указывающее на риск необходимости в ЭВ у получателя во промежутке времени события (например, в течение следующих 30 дней в иллюстративных примерах). Прогноз риска ЭВ может быть представлен различным образом. В некоторых вариантах реализации, модель риска ЭВ разработана для вывода вероятности, то есть, прогноза риска в диапазоне [0,1], который затем может быть представлен в виде процентного значения (например, низкое процентное значение указывает на низкую вероятность необходимости в ЭВ, а процентное значение около 100% указывает на очень высокую вероятность необходимости в ЭВ в течение следующих 30 дней). В других вариантах реализации, риск ЭВ подвергается квантованию, так что выходными данными являются, например, одно из следующих квантованных значений: «низкий риск», «средний риск», «высокий риск». Целью этапа 106 обучения является выбор значений для параметров модели риска ЭВ для того, чтобы максимизировать согласованность между риском ЭВ, спрогнозированным моделью, и фактическими аннотациями ЭВ данных обучения, предотвращая при этом переобучение и генерирование обобщаемых прогнозов.
На этапе 110 проверки модели риска ЭВ используется поднабор проверочных данных для выполнения проверки модели 108. Данная проверка подразумевает ввод проверочных образцов абонента (или более конкретно, их соответствующих наборов характеристик) в модель 108 риска ЭВ и оценку количества ложноположительных результатов, и/или количества ложноотрицательных результатов, или иную оценку производительности модели 108 риска ЭВ. Если проверка завершена успешно (например, количество ложноположительных и/или ложноотрицательных результатов в достаточной степени низкое), то модель 108 риска ЭВ становится моделью 92 риска ЭВ в прогнозирующем модуле 60 оценки риска ЭВ. Если проверка не завершена успешно (например, при слишком большой доле ложноположительных результатов и/или слишком большой доле ложноотрицательных результатов), то последовательность процесса возвращается в блок 100 (или, в качестве альтернативы, в блок 104) для выполнения дальнейшей доработки модели риска ЭВ.
Предполагается, что в недавно описанном процессе обучения модель 92 риска ЭВ предназначена для совокупного риска. В некоторых вариантах реализации, в дополнение или в качестве альтернативы, желательно обучать модели риска ЭВ различным типам риска ЭВ, таким как риск ЭВ для серьезного падения, риск ЭВ для затруднений дыхания, острое кардиологическое состояние, риск ЭВ для затруднения дыхания, или т.п. Здесь, профили абонента подходящим образом обозначены следующим образом (причем вновь предполагается, что промежуток времени прогнозирования составляет тридцать дней): для каждого абонента и для каждого типа риска, если ЭВ для данного типа риска было выполнено для данного абонента на протяжении последних 30 дней, то абонент маркируется, как положительный образец для ЭВ при реагировании на данный тип риска; если для данного типа риска ЭВ не выполнялось для данного абонента на протяжении последних 30 дней, то абонент маркируется, как отрицательный образец для ЭВ при реагировании на данный тип риска. После этого, этапы 104, 106, 108, 110 обучения независимо выполняются для каждого типа риска (с использованием аннотаций к положительным/отрицательным образцам для данного типа риска) для генерирования модели риска ЭВ для каждого типа риска. В данном случае, окончательная модель 92 риска ЭВ фактически содержит множество моделей риска ЭВ, по одной для каждого типа риска и, возможно, также по одной для недифференцированного риска ЭВ. (В альтернативном подходе могут использоваться известные технологии обучения одной многозначной модели выхода, что, преимущественно, может обеспечить выгодное использование связей между различными типами риска).
Ожидается, что факторы риска ЭВ не будут быстро изменяться с течением времени. Однако некоторое изменение возможно. Например, инструкции по эксплуатации услуги ПСЭР время от времени могут обновляться и такое обновление может приводить в результате к изменению критерия инициирования ЭВ. Подобным образом, протоколы СМП могут периодически обновляться и такое обновление может приводить в результате к применению другого критерия принятия решения относительно того, когда помещать человека в больницу. Факторы риска ЭВ также могут подвергаться влиянию ввиду технического прогресса (например, новые устройства мониторинга), демографических изменений (например, стареющее население), улучшенных медицинских препаратов и т.п. Для вычисления таких изменений во времени может быть инициировано 112 обновление модели риска ЭВ на некоторой основе, например, ежемесячно или каждые две недели и т.д. Преимущественно, параметры существующей модели 92 риска ЭВ могут использоваться в качестве исходных значений для обновления модели, и поскольку ожидается, что факторы риска ЭВ со временем изменяются относительно медленно, обновление модели в целом является быстрым процессом.
Ссылаясь на фиг. 4, описан способ, представленный в качестве примера, который выполняется модулем 94 предварительной оценки риска ЭВ применительно к запросу абонента. На этапе 120, абонент инициирует запрос центра 18 обработки запросов ПСЭР путем активации своего носимого устройства 10 запроса. Идентифицирующий компонент вызывающего абонента или другая автоматическая подсистема идентификации вызывающего абонента в центре 18 обработки запросов ПСЭР идентифицирует вызывающего абонента, а на этапе 122 из базы 52 данных ПСЭР извлекается профиль абонента. На этапе 124 запускается модуль 94 предварительной оценки риска ЭВ для прогнозирования риска ЭВ для вызывающего абонента. С этой целью, значения для одного и того же набора характеристик, который использовался в процессе обучения (фиг. 3), извлекаются из профиля вызывающего абонента, извлеченного на этапе 122. Набор характеристик, извлеченный из профиля, извлеченного на этапе 122, содержит любые «новые» данные профиля, которые были сгенерированы после обучения модели 92 риска ЭВ – например, характеристика недавности «время, прошедшее с последнего ЭВ» отражает любые события ЭВ, которые произошли с момента последнего обучения модели. (Однако набор характеристик для абонента не отражает какие-либо обновления, которые будут привнесены ввиду текущего запроса). В зависимости от того, как составлена модель 92 риска ЭВ, выходными данными модели может быть вероятность риска ЭВ, колеблющаяся от 0 (практически никакого риска ЭВ в течение следующих 30 дней) до 1 (очень высокий риск ЭВ в течение следующих 30 дней). Если модель 92 риска ЭВ содержит модели для различных типов риска (падения, проблемы с сердцем, дыхания, и т.д.), то этап 124 подходящим образом применяет каждую модель риска ЭВ, специфичную для каждого такого типа, для генерирования прогнозов риска ЭВ для каждого из различных типов риска.
На этапе 126 профиль абонента отображается на отображающем устройстве 44 компьютера 40, используемого оператором центра обработки запросов, который обрабатывает запрос (см. фиг. 1), вместе с отображением прогноза риска ЭВ (или прогнозов риска в случае прогнозов различных типов риска). Если риск ЭВ высок, при необходимости, это может быть отображено в выделенном формате, например, с помощью шрифта красного цвета, мигания, или т.п. В одном предусмотренном варианте реализации, прогноз риска ЭВ отображается в виде шкалы. В другом предусмотренном варианте реализации, прогноз риска ЭВ отображается в виде цветов светофора, где красный = высокий риск, желтый = средний риск, зеленый = низкий риск. При необходимости, абонент, подверженный высокому риску, может быть помечен красной меткой или другой меткой. При необходимости, история рисков абонента может быть вычислена, как функция времени (например, путем искусственного удаления данных, сгенерированных по прошествии некоторого времени, для вычисления риска ЭВ в некотором времени, и путем повторения для нескольких различных промежутков времени перед настоящим временем), и результаты могут быть отображены в виде линии или столбчатой диаграммы для указания на то, увеличивался ли риск ЭВ у абонента с течением времени.
Отображенный прогноз риска ЭВ позволяет оператору центра обработки запросов принять во внимание риск ЭВ при оказании помощи вызывающему абоненту. Например, оператор может потратить больше времени на абонентов, группы высокого риска, и получить от них больше информации, относящейся к предрасположенным факторам риска. Оператор центра обработки запросов общается с абонентом (если возможно) и составляет заключение 128 о запросе, которое может содержать инициирование ЭВ, при необходимости, или может включать в себя запрос соседа, или обсуждение медицинского случая с абонентом, при необходимости. Если запрос является регистрационным запросом, то заключением 128 о запросе является запись запроса, как регистрационного запроса. Если запрос является случайным запросом, то заключением 128 о запросе является запись запроса, как случайного запроса, возможно вместе с указанием на какие-либо примечательные особенности запроса (такие как когнитивное состояние абонента). На этапе 130 оператор центра обработки запросов обновляет профиль абонента в соответствии с самым последним запросом, в том числе отметкой даты/времени (записываемой, как правило, автоматически), записью какого-либо(каких-либо) медицинского(медицинских) состояния(состояний), самостоятельно сообщенного(сообщенных) пациентом, ввод заключения 128 о запросе и какой-либо вспомогательной информации (такой как номер доставленного транспортного средства СМП, если доступен, в случае ЭВ). После этого, данная информация о запросе становится частью профиля вызывающего абонента и может быть включена в набор характеристик, используемых для дальнейшего вычисления риска ЭВ для абонента. Таким образом, можно видеть, что прогноз риска ЭВ для абонента может развиваться с течением времени ввиду инициируемых абонентом запросов, или (в других примерах) ввиду обновленных данных EMR для абонента, или т.п. В некоторых вариантах реализации предполагается обновление прогноза риска ЭВ после завершения запроса путем активации модуля 94 предварительной оценки риска ЭВ непосредственно после завершения этапа 130 обновления для того, чтобы измерить изменение риска ЭВ после обработки текущего запроса.
Ссылаясь на фиг. 5, описан представленный в качестве примера способ, подходящим образом выполняемый модулем 94 предварительной оценки риска ЭВ и статистическим модулем 96. На этапе 140 из базы 52 данных ПСЭР извлекается (первый) профиль абонента и из данного профиля генерируются значения набора характеристик. На этапе 142 активируется модуль 94 предварительной оценки риска ЭВ для прогнозирования риска ЭВ для абонента, профиль которого был извлечен на этапе 140. На этапе 144 зацикливания, этапы 140, 142 повторяются для каждого абонента из кластера абонентов, обслуживаемых услугой ПСЭР (или для некоторого поднабора данного кластера, например, если целью является обеспечение данных для конкретной области). Если модель 92 риска ЭВ содержит компоненты для различных типов риска, каждый из них вычисляется для каждого абонента на этапах 140, 142, 144. Результатом этапов 140, 142, 144 является таблица 150 риска ЭВ (или рисков, если имеют место различные риски ЭВ, вычисленные для различных типов риска) для каждого абонента. Данная таблица 150 может использоваться различным образом. Например, на этапе 152 генерируется перечень всех абонентов, риск ЭВ (при необходимости, для заданного типа риска ЭВ) которых превосходит некоторое пороговое значение риска. Иными словами, этап 152 генерирует перечень абонентов, группы самого высокого риска ЭВ. В дополнение или в качестве альтернативы, на этапе 154 производится статистический анализ данных, содержащихся в таблице 150, например, для генерирования предварительной оценки ожидаемого количества абонентов с одним или более событий ЭВ на протяжении промежутка времени (например, в следующие 30 дней). Например, если риск возникновения одного или более событий ЭВ в течение следующих 30 дней для абонента количественно выражается, как вероятность , то ожидаемое количество абонентов с одним или более событиями ЭВ может быть предварительно оценено, как где суммирование производится по группе (), обслуживаемой услугой ПСЭР. Вычисление может быть выполнено по всем абонентам ПСЭР, или по подгруппам абонентов ПСЭР, определенных, например, по географическому региону, медицинскому состоянию, или членству в некоторой программе здравоохранения или медицинского страхования. Другой предполагаемый анализ предназначен для вычисления риска ЭП, как функции времени для пациента – риск ЭП, быстро увеличивающийся со временем, может указывать начало тяжелого медицинского состояния. На этапе 160 из анализов 152, 154 генерируется(генерируются) подходящий(подходящие) отчет(отчеты) для использования пунктом управления услугой ПСЭР при управлении операциями, такими как планирование уровней укомплектованности штата центра 18 обработки запросов, предоставление профилактического вмешательства для абонентов, подверженных самому высокому риску экстренного вызова (профилактическое вмешательство, как правило, является менее затратным, чем запрос скорой медицинской помощи), для улучшенной координации с диспетчерским центром 70 СМП, или т.п. Что касается последнего, то предполагается, что при подготовке отчета обеспечивается доступ к услуге разбивки коммуникаций в режиме онлайн для графического нанесения местоположений (т.е. мест проживания) абонентов группы высокого риска на географической карте, для помощи при планировании распределения карет скорой помощи. Подобные компоненты отчета также могут быть предоставлены программам общественного здравоохранения, направленным на предотвращение госпитализаций.
Ссылаясь на фиг. 6-9, описан еще один иллюстративный пример прогнозирующего модуля 60 оценки риска ЭВ. В модуле 90 обучения модели риска ЭВ вновь используется модель множественной логистической регрессии, описанная ранее. В иллюстративном примере используется набор характеристик, содержащий, в качестве примера: характеристики региона; характеристику для каждого события из множества состояний, сообщенных самостоятельно, представленную двоичными значениями (например, «1», если абонент сообщил о состоянии, «0» - в противном случае); характеристики, указывающие на сеть поддержки абонентов; и характеристики недавности и частоты, характеризующие запросы и события ЭВ различных типов риска. На фиг. 6 изображена градуировочная кривая истинного результата в сравнении со спрогнозированным риском экстренного вызова (ЭВ) для транспорта больницы для последующего промежутка времени, составляющего 30 дней. Изображены агрегатные средства в десятых долях риска. Линейная регрессия привела в результате к с отрегулированным . На фиг. 7 изображен график рабочей кривой приемника (ROC) для проверочной когорты, сгенерированной на этапе 110 проверки модели риска ЭВ (см. фиг. 3). Площадь под кривой (от англ. – «area-under-curve», сокращенно – «AUC») кривой ROC составляет AUC = 0,7602. На фиг. 8 изображен типичный отчет такого типа, который может быть сгенерирован на этапе 152 по фиг. 5. Следует понимать, что в данном иллюстративном примере сгенерированный отчет является отчетом, интерактивным в режиме онлайн или основанным на применении ЭВМ (хотя предполагается, что имеется опция печати твердой копии отчета). Панель окна отчета, находящаяся слева, на фиг. 8 показывает ранжированный перечень под названием «Patient with risk for transport» («Пациенты в группе риска, которым необходима транспортировка») тех абонентов ПСЭР (называемых «пациентами» в отчете по фиг. 8) с самым высоким риском ЭВ. Риски ЭВ нормализуются так, что значение риска ЭВ, составляющее 1,00, соответствует среднему риску ЭВ для группы. В левой панели перечислены те пациенты, риск ЭВ которых больше, чем пороговое значение, составляющее 1,5. Как видно далее, был выбран один абонент («John Smith») (например, с помощью экранного курсора, управляемого компьютерной мышью, трекболом, тачпадом или другим позиционирующим устройством пользовательского ввода) для дальнейшего просмотра. Панель, находящаяся справа, показывает риск ЭВ для John Smith (риск ЭВ 1,70), выделенный на гистограмме рисков ЭВ. Гистограмма является логарифмически нормальной и достигает максимума, когда риск ЭВ приближен к единице, поскольку значения риска ЭВ нормализуются так, что 1,00 соответствует среднему риску ЭВ для группы. Также изображено пороговое значение для профилактического действия, составляющее 1,5. Таким образом, интерактивный отчет по фиг. 8 позволяет пункту управления ПСЭР быстро идентифицировать тех абонентов, которые обладают самым высоким спрогнозированным риском необходимости экстренного вызова в течение следующих тридцати дней. На основе данной информации, персонал ПСЭР может предпринять профилактическое действие, такое как установление контакта с этими абонентами ПСЭР, или лицом, осуществляющим уход, или представителем (например, родственником, другом, или другим контактным лицом, указанным в профиле абонента ПСЭР) для предположения того, что они в скором времени планируют визит к врачу.
В иллюстративных примерах, приведенный в качестве примера прогнозирующий модуль 60 оценки риска прогнозирует риск экстренного вызова (ЭВ) в течение последующего промежутка времени, причем ЭВ может определяться различными способами в конкретном варианте реализации, как риск запроса кареты скорой помощи (вычисляемый независимо от того, действительно ли человек доставлен в больницу или нет) или более конкретный риск фактической транспортировки в карете скорой помощи в больницу (вычисляемый только, если человек действительно доставлен в больницу). Однако следует понимать, что описанные технологии могут быть надежным образом применены для построения прогнозирующего модуля оценки риска вместе с услугой ПСЭР для прогнозирования других типов риска. Например, прогнозирующий модуль оценки риска может быть выполнен с возможностью прогнозирования риска того, что абонент будет направлен в центр сестринского ухода, дом престарелых, или другое учреждение с уходом на постоянной основе. Данная информация может быть полезна на активации профилактического действия, которое может позволить абоненту оставаться в своем личном месте проживания.
Ссылаясь обратно на фиг. 1, в некоторых вариантах реализации, профиль абонента и/или прогноз риска ЭВ может быть предоставлен родственнику, лицу, осуществляющему уход, или другу через приложение 82 для мобильного устройства, запущенное на мобильном устройстве 80, представленном в качестве примера, таком как сотовый телефон, планшет или тонкий ПК, или т.п. Данная особенность направлена на решение существенного недостатка некоторых устройств ПСЭР, а именно того, что они строятся на взаимоотношении абонентов, которые могут не включать в себя посторонние лица, такие как родственники, участковые медсестры, или друзья абонента. Такие «неофициальные» лица, осуществляющие уход, проявляют интерес к медицинскому состоянию абонента, и также извлекут пользу из предупреждения о высоком риске ЭВ.
Описанное приложение 82 мобильного устройства может быть запущено на нескольких мобильных устройствах (на фиг. 1 для иллюстрации показано лишь один пример устройства/приложения), синхронизированных между собой через сотовую сеть телефонной связи, сеть WiFi или другую беспроводную сеть. У одного абонента ПСЭР в одно и то же время может быть несколько неофициальных лиц, осуществляющих уход (например, супруга/супруг, один или более детей, участковая медсестра, сосед и так далее), у каждого из которых имеется сотовый телефон или другое мобильное устройство, на котором запущен образец приложения 82. Передача и синхронизация обработки случаев, информации и действия реагирующего лица улучшаются за счет сообщения данных посредством приложения 82 для мобильного устройства. Например, когда оператор центра обработки запросов ПСЭР уведомляет соседа о падении и вносит это в систему ПСЭР, это подходящим образом сообщается всем неофициальным лицам, осуществляющим уход за абонентом, посредством приложения 82, так что все неофициальные лица, осуществляющие уход, становятся осведомленными о случае падения, а также становятся осведомленными о том, что эта проблема была решена соседом. Это улучшает командную работу между неофициальными лицами, осуществляющими уход.
Далее описаны некоторые дополнительные предполагаемые возможности приложения 82.
В некоторых вариантах реализации, приложение 82 обеспечивает неофициальному лицу, осуществляющему уход, возможность сравнения краткосрочных (например, 90 дней) рисков ЭВ у различных абонентов ПСЭР. Риск вычисляется моделью 92 риска ЭВ с помощью данных о случае и данных о здоровье, имеющихся у услуги ПСЭР. Вероятно, что данный аспект особенно значим для таких лиц, осуществляющих уход, как участковые медсестры, которые осуществляют уход за рядом различных абонентов ПСЭР и могут захотеть сравнить их относительные медицинские состояния.
В некоторых вариантах реализации, обеспечивается долгосрочный (например, один год) вычисленный риск ЭВ, который может сравниваться с риском ЭВ всей группы (группой ПСЭР или региональной или национальной группы).
Приложение 82 может предоставить «панель управления рисками» с вводами, посредством которых лицо, осуществляющее уход, может вводить параметры, такие как параметры, относящиеся к состоянию здоровья, демографическим данным, состоянию слуха и зрения, или т.п., которые в данный момент отсутствуют у абонента ПСЭР. На основании этих вводов, прогнозирующий модуль 60 оценки риска вычисляет долгосрочный риск ЭВ, если такое(такие) состояние(состояния) имеет место так, чтобы предвидеть долгосрочный риск ЭВ для абонента ПСЭР, если у него/нее развиваются такие состояния.
В другом предусмотренном варианте, приложение 82 может управлять внешними звуковыми и/или визуальными предупреждениями, например, управлять светом через IP-интерфейс для того, чтобы активировать мигание освещения в помещении с целью уведомления лица, осуществляющего уход, о том, что услуга ПСЭР инициировала ЭВ к месту проживания абонента.
В иллюстративном варианте реализации, приложение 82 работает вместе с услугой ПСЭР, представленной в качестве примера на фиг. 1, содержащей прогнозирующий модуль 60 оценки риска ЭВ, и, соответственно, предоставляет информацию, содержащую как информацию о профиле абонента (по возможности, отредактированную в соответствии с HIPAA или другими правилами конфиденциальности, и/или в соответствии с инструкциями абонента), так и прогноз риска ЭВ для абонента. Однако следует понимать, что приложение 82, описанное в настоящем документе, в качестве альтернативы может быть эффективно предоставлено вместе с услугой ПСЭР, которая не содержит описанный прогнозирующий модуль 60 оценки риска – в данных вариантах реализации, приложение 82 эффективно предоставляет лицам, осуществляющим уход, такую информацию, как краткие описания самых последних запросов, связанных с медицинским состоянием, центра обработки запросов ПСЭР абонентом, и их заключение, но не предоставляет прогноз риска ЭВ.
Следует понимать, что описанные подходы, реализуемые серверным компьютером 50 ПСЭР и/или компьютером 40 центра обработки запросов, также могут быть реализованы в виде энергонезависимого носителя данных, хранящего инструкции, считываемые и исполняемые таким компьютером 40, 50 для выполнения описанных операций по обработке данных. В качестве примера, такой энергонезависимый носитель данных может включать в себя: жесткий диск или другой магнитный носитель данных; оптический диск или другой оптический носитель данных; постоянное запоминающее устройство (ПЗУ), электронно программируемую постоянную память (ЭППП), флэш-память или другой электронный носитель данных; их различные комбинации; и т.п. Подобным образом, база 52 данных ПСЭР может храниться на таком носителе данных, который в некоторых вариантах реализации, преимущественно, реализован в виде RAID-массива или другого энергонезависимого носителя данных, обеспечивающего многократность.
Настоящее изобретение было описано со ссылкой на предпочтительные варианты реализации. Специалистам могут быть понятны модификации и изменения после прочтения и понимания представленного выше подробного описания. Предполагается, что изобретение включает в себя все такие модификации и изменения в такой степени, как они следуют из объема прилагаемой формулы изобретения или ее эквивалентов.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМЫ, УСТРОЙСТВА И СПОСОБЫ ДЛЯ СОВМЕСТНОГО И РАСПРЕДЕЛЕННОГО УПРАВЛЕНИЯ ЭКСТРЕННЫМИ МУЛЬТИМЕДИЙНЫМИ ДАННЫМИ | 2012 |
|
RU2598819C9 |
СИСТЕМА ЛИЧНОЙ БЕЗОПАСНОСТИ | 2020 |
|
RU2757158C1 |
Территориальная система экстренной кардиологической помощи | 2017 |
|
RU2673108C1 |
НАБОР ДЛЯ ЭКСТРЕННЫХ СИТУАЦИЙ | 2019 |
|
RU2795794C2 |
СИСТЕМА СОПРОВОЖДЕНИЯ И ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ОБЪЕКТОВ | 2014 |
|
RU2585991C2 |
СИСТЕМА ДЛЯ УПРАВЛЕНИЯ ВЫЗОВОМ С БОРТА САМОЛЕТА СЛУЖБ НЕОТЛОЖНОГО РЕАГИРОВАНИЯ В БОРТОВОЙ БЕСПРОВОДНОЙ СОТОВОЙ СЕТИ САМОЛЕТА | 2009 |
|
RU2515223C2 |
СИСТЕМА ТРЕВОЖНОГО ОПОВЕЩЕНИЯ И ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ | 2004 |
|
RU2259595C1 |
СТАНДАРТ МЕДИЦИНСКОГО БРАСЛЕТА | 2015 |
|
RU2712819C2 |
ПОДДЕРЖКА ЭКСТРЕННЫХ ВЫЗОВОВ В БЕСПРОВОДНОЙ ЛОКАЛЬНОЙ ВЫЧИСЛИТЕЛЬНОЙ СЕТИ | 2007 |
|
RU2409009C2 |
ПОДДЕРЖКА ЭКСТРЕННЫХ ВЫЗОВОВ В РЕЖИМЕ КОММУТАЦИИ КАНАЛОВ | 2006 |
|
RU2396733C2 |
Изобретение относится к персональным средствам экстренного реагирования. Технический результат заключается в уменьшении времени ответа на вызовы с повышенным риском для клиента персональной системы экстренного реагирования (ПСЭР). Извлекают профиль конкретного клиента ПСЭР из базы данных ПСЭР. Генерируют значения набора характеристик указанного конкретного клиента ПСЭР с помощью компьютера на основании извлеченного профиля конкретного клиента ПСЭР. Вычисляют на основании значений набора характеристик прогноз риска экстренного вызова для конкретного клиента ПСЭР на протяжении последующего промежутка времени с использованием регрессионной модели риска экстренного вызова и сгенерированных значений набора характеристик для конкретного клиента ПСЭР с помощью компьютера. Отображают вычисленный прогноз риска экстренного вызова для конкретного клиента ПСЭР на отображающем элементе вместе с отображаемой информацией, содержащейся в профиле. Принимают один или более входящих запросов от одного или более клиентов ПСЭР, включающих запрос от указанного конкретного клиента ПСЭР. Осуществляют приоритизацию одного или более запросов от одного или более клиентов ПСЭР, включающих запрос от указанного конкретного клиента ПСЭР, на основании указанного прогноза риска экстренного вызова. 2 н. и 13 з.п. ф-лы, 8 ил.
1. Персональная система экстренного реагирования, функционирующая совместно с базой (52) данных персональной системы экстренного реагирования (ПСЭР), хранящей профили клиентов ПСЭР, содержащие по меньшей мере демографическую информацию и информацию о прошлых запросах центра (18) обработки запросов ПСЭР, причем информация о прошлых запросах содержит информацию о прошлых событиях экстренного вызова, инициированных центром обработки запросов ПСЭР, при этом персональная система экстренного реагирования содержит:
серверную систему (16) ПСЭР, содержащую серверный компьютер (50) ПСЭР, запрограммированный на выполнение этапов, включающих:
извлечение профиля конкретного клиента ПСЭР из базы данных ПСЭР;
генерирование значений набора характеристик указанного конкретного клиента ПСЭР на основании извлеченного профиля конкретного клиента ПСЭР, причем набор характеристик содержит по меньшей мере одну характеристику недавнего события экстренного вызова;
вычисление на основании значений набора характеристик прогноза риска экстренного вызова для конкретного клиента ПСЭР на протяжении последующего промежутка времени с помощью регрессионной модели (92) риска экстренного вызова, обученной на основе профилей для клиентов ПСЭР, хранимых в базе данных ПСЭР;
прием одного или более входящих запросов от одного или более клиентов ПСЭР, включающих запрос от указанного конкретного клиента ПСЭР; и
приоритизацию одного или более запросов от одного или более клиентов ПСЭР, включающих запрос от указанного конкретного клиента ПСЭР, на основании указанного прогноза риска экстренного вызова.
2. Персональная система экстренного реагирования по п. 1, которая дополнительно содержит:
компьютер (40) центра обработки запросов ПСЭР, содержащий отображающий элемент (44);
причем серверный компьютер (50) ПСЭР запрограммирован на выполнение дополнительного этапа сообщения вычисленного прогноза риска экстренного вызова и части или всего профиля, извлеченного на этапе извлечения профиля конкретного клиента ПСЭР из базы данных ПСЭР, компьютеру центра обработки запросов ПСЭР; и
причем компьютер центра обработки запросов ПСЭР запрограммирован на отображение вычисленного прогноза риска экстренного вызова и сообщенной части или всего профиля на отображающем элементе компьютера центра обработки запросов ПСЭР.
3. Персональная система экстренного реагирования по п. 2, которая дополнительно содержит:
множество носимых устройств (10) запроса и множество спикерфонов (12), размещенных в местах проживания клиентов ПСЭР,
причем каждый спикерфон активируется беспроводным образом, соответствующим одним из носимых устройств запроса;
причем спикерфоны (12) связаны по телефонной линии с центром (18) обработки запросов ПСЭР для обеспечения клиенту ПСЭР возможности общения с оператором центра обработки запросов ПСЭР.
4. Персональная система экстренного реагирования по любому из пп. 1-3, в которой серверный компьютер (50) ПСЭР запрограммирован на выполнение следующих дополнительных этапов:
повторение извлечения, генерирования и вычисления также для вычисления прогнозов риска экстренного вызова на протяжении последующего промежутка времени для группы клиентов ПСЭР, профили которых хранятся в базе (52) данных ПСЭР;
ранжирование клиентов ПСЭР для идентификации поднабора группы клиентов ПСЭР, имеющих вычисленные прогнозы наиболее высокого риска экстренного вызова; и
отображение и/или распечатка твердой копии идентифицированного поднабора группы клиентов ПСЭР, имеющих вычисленные прогнозы наиболее высокого риска экстренного вызова.
5. Персональная система экстренного реагирования по любому из пп. 1-4, в которой серверный компьютер (50) ПСЭР запрограммирован на выполнение следующих дополнительных этапов:
повторение извлечения, генерирования и вычисления также для вычисления прогнозов риска экстренного вызова на протяжении последующего промежутка времени для группы клиентов ПСЭР, профили которых хранятся в базе (52) данных ПСЭР;
вычисление ожидаемого количества клиентов ПСЭР с одним или более событий экстренного вызова в течение последующего промежутка времени для группы или поднабора группы клиентов ПСЭР на основе вычисленных прогнозов экстренного вызова для группы клиентов ПСЭР и
отображение и/или распечатка твердой копии ожидаемого количества абонентов с одним или более событий экстренного вызова на протяжении последующего промежутка времени для группы клиентов ПСЭР.
6. Персональная система экстренного реагирования по любому из пп. 1-5, в которой набор характеристик дополнительно содержит по меньшей мере одну характеристику частоты событий экстренного вызова.
7. Персональная система экстренного реагирования по любому из пп. 1-6, в которой набор характеристик содержит множество различных характеристик недавности событий экстренного вызова,
при этом каждая из различных характеристик недавности событий экстренного вызова указывает на недавность экстренного вызова для различных типов медицинских событий.
8. Персональная система экстренного реагирования по любому из пп. 1-7, в которой набор характеристик дополнительно содержит характеристику частоты регистрационных запросов, а регрессионная модель (92) риска экстренного вызова выполнена с возможностью ее обучения для прямого соотнесения большей частоты регистрационных запросов с более высоким прогнозом риска экстренного вызова.
9. Персональная система экстренного реагирования по любому из пп. 1-8, в которой набор характеристик дополнительно содержит характеристику частоты случайных запросов, а регрессионная модель (92) риска экстренного вызова выполнена с возможностью ее обучения для прямого соотнесения большей частоты случайных запросов с более высоким прогнозом риска экстренного вызова.
10. Способ экстренного реагирования, выполняемый вместе с услугой персональной системы экстренного реагирования (ПСЭР), в котором активация носимого устройства (10) запроса клиентом ПСЭР обуславливает связь спикерфона (12) с центром (18) обработки запросов ПСЭР для обеспечения клиенту ПСЭР возможности общения с оператором центра обработки запросов ПСЭР при извлечении профиля клиента ПСЭР из базы (52) данных ПСЭР и отображении информации, содержащейся в профиле, на отображающем элементе (44) в центре обработки запросов ПСЭР, при этом способ включает:
извлечение профиля конкретного клиента ПСЭР из базы данных ПСЭР;
генерирование значений набора характеристик указанного конкретного клиента ПСЭР с помощью компьютера (50) на основании извлеченного профиля конкретного клиента ПСЭР;
вычисление на основании значений набора характеристик прогноза риска экстренного вызова для конкретного клиента ПСЭР на протяжении последующего промежутка времени с использованием регрессионной модели риска экстренного вызова и сгенерированных значений набора характеристик для конкретного клиента ПСЭР с помощью компьютера;
отображение вычисленного прогноза риска экстренного вызова для конкретного клиента ПСЭР на отображающем элементе вместе с отображаемой информацией, содержащейся в профиле;
прием одного или более входящих запросов от одного или более клиентов ПСЭР, включающих запрос от указанного конкретного клиента ПСЭР; и
приоритизацию одного или более запросов от одного или более клиентов ПСЭР, включающих запрос от указанного конкретного клиента ПСЭР, на основании указанного прогноза риска экстренного вызова.
11. Способ по п. 10, в котором вычисление также включает вычисление одного из:
прогноза риска того, что клиенту ПСЭР потребуется экстренный вызов транспортного средства скорой медицинской помощи (СМП) на протяжении указанного последующего промежутка времени;
прогноза риска того, что клиенту ПСЭР потребуется экстренный вызов, при котором клиента ПСЭР доставляют в больницу, на протяжении указанного последующего промежутка времени; или
прогноза риска того, что клиент ПСЭР будет доставлен в учреждение с постоянным уходом на протяжении указанного последующего промежутка времени.
12. Способ по любому из пп. 10, 11, в котором:
генерирование также включает генерирование значения по меньшей мере для одной характеристики, количественно выражающей прошлый экстренный вызов для клиента ПСЭР, инициированный центром (18) обработки запросов ПСЭР; и
вычисление также включает вычисление прогноза риска экстренного вызова с помощью регрессионной модели (92) риска экстренного вызова, выполненной с возможностью приема набора характеристик в качестве входных данных, содержащего по меньшей мере одну характеристику, количественно выражающую прошлый экстренный вызов для клиента ПСЭР, инициированный центром (18) обработки запросов ПСЭР.
13. Способ по п. 12, в котором указанная по меньшей мере одна характеристика, количественно выражающая прошлый экстренный вызов для конкретного клиента ПСЭР, инициированный центром (18) обработки запросов ПСЭР, содержит:
характеристику недавности события экстренного вызова, количественно выражающую время с момента последнего экстренного вызова для конкретного клиента ПСЭР, инициированного центром обработки запросов ПСЭР; и
характеристику частоты событий экстренного вызова, количественно выражающую количество или частоту событий экстренного вызова для конкретного клиента ПСЭР, инициированного центром обработки запросов ПСЭР.
14. Способ по п. 13, в котором:
генерирование также включает генерирование значения для характеристики частоты регистрационных запросов, количественно выражающей количество или частоту регистрационных запросов центра (18) обработки запросов, осуществленных клиентом ПСЭР; и
вычисление также включает вычисление прогноза риска экстренного вызова с помощью регрессионной модели (92) риска экстренного вызова, выполненной с возможностью приема набора характеристик в качестве входных данных, дополнительно содержащего характеристику частоты регистрационных запросов, причем регрессионная модель риска экстренного вызова прямо соотносит большее количество или частоту регистрационных запросов с прогнозированием более высокого риска экстренного вызова.
15. Способ по любому из пп. 13, 14, в котором:
генерирование также включает генерирование значения для характеристики частоты случайных запросов, количественно выражающей количество или частоту случайных запросов центра (18) обработки запросов ПСЭР, осуществленных клиентом ПСЭР; и
вычисление также включает вычисление прогноза риска экстренного вызова с помощью регрессионной модели (92) риска экстренного вызова, выполненной с возможностью приема набора характеристик в качестве входных данных, дополнительно содержащего характеристику частоты случайных запросов, причем регрессионная модель риска экстренного вызова прямо соотносит большее количество или частоту случайных запросов с прогнозированием более высокого риска экстренного вызова.
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз | 1924 |
|
SU2014A1 |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
Приспособление для суммирования отрезков прямых линий | 1923 |
|
SU2010A1 |
Способ регулировки температур регенераторов | 1957 |
|
SU123649A1 |
Авторы
Даты
2019-09-20—Публикация
2015-06-09—Подача