ПАРОГАЗОВАЯ УСТАНОВКА С ГЛУБОКОЙ УТИЛИЗАЦИЕЙ ТЕПЛА ОТХОДЯЩИХ ГАЗОВ Российский патент 2019 года по МПК F01K25/08 

Описание патента на изобретение RU2700843C1

Изобретение относится к области энергетики и направлено на совершенствование парогазовых установок (ПГУ).

Области применения данного решения: ПГУ в любом составе: ПГУ-ТЭЦ (ТЭС, РТС, мини-ТЭЦ и пр.), газотурбинные приводы компрессоров газоперекачивающих, ГПС, станций магистральных газо- и нефтепроводов; при проектировании и создании новых и совершенствовании (реконструкции, модернизации) существующих ПГУ. При использовании известных методов охлаждения компримируемого воздуха в летнее время (процесс STIG, системы испарительного охлаждения, СИО) заявляемое устройство позволяет исключить потери воды.

Известны ПГУ с глубокой утилизацией (ГУ) тепла отходящих газов - например [1] (аналог). Охлаждение и конденсацию парогазовой смеси (ПГС) осуществляют в конденсационном теплообменнике-утилизаторе (КТУ), включенном в замкнутый холодильный контур испарителя абсорбционного бромистолитиевого трансформатора тепла (АБТТ). КТУ установлен в газоходе сразу за котлом-утилизатором с возможностью байпасирования и оборудован системой слива, сбора, удаления, обработки (очистки) и циркуляции конденсата продуктов сгорания (ПС). Схема требует больших эксплуатационных и особенно капитальных затрат (стоимость АБТТ с оборудованием и коммуникациями), производственных площадей, больших расходов циркуляционной воды.

В аналоге хладоносителем для КТУ является вола, охлажденная в испарителе АБТТ. В заявляемом решении охладителем служит конденсат паровой турбины ПТ, подаваемый из конднсатора на вход КТУ.

По сумме признаков наиболее близким к предлагаемому решению является ПГУ с утилизацией тепла отходящих газов, содержащая

- газотурбинную установку (ГТУ), включающую газовую турбину, многоступенчатый турбокомпрессор, камеру сгорания (КС) и электрогенератор;

- паровой котел-утилизатор (КУ) с газовым трактом и дымовой трубой;

- паротурбинную установку (ПТУ), состоящую из паровой турбины (ПТ) с конденсатором, снабженным конденсатосборником, электрогенератора, градирни и насосов - питательного, циркуляционного и конденсатного;

- ЕТУ [2] (прототип).

В отличие от аналогов и прототипа в предлагаемой ПГУ с целью

- исключения потерь воды с впрыском;

- повышения экономичности и энергоэффективности работы установки за счет глубокой утилизации тепла отходящих газов;

- улучшения экологических характеристик

вход КТУ соединен с конденсатосборником конденсатора ПТ, а выход - с линией подачи конденсата от конденсатора паровой турбины в котел-утилизатор.

Заявляемая установка схематично показана на Фиг. 1-4, где обозначены: 1 - электрогенератор ГТУ. 2 - многоступенчатый турбокомпрессор. 3 - комплексная воздухоочистительная установка (КВОУ) с системой испарительного охлаждения (СИО). 4 - узел распыления. 5 - запорно-регулирующие органы, интегрированные в САУ объекта. 6 - камера сгорания (КС). 7 - газовая турбина. 8 - паровой котел-утилизатор (ПКУ). 9, 10 - барабаны высокого, ВД, и низкого, НД, давления соответственно с встроенной деаэрационной колонкой. 11 - питательный насос ВД. 12 - теплофикационный отбор пара. 13 - конденсационный теплообменник-утилизатор, КТУ. 14 - съемная крышка камеры газохода. 15 - каплеуловитель (сетчатый фильтр). 16 - дымовая труба. 17 - электрогенератор ПТУ. 18, 19 - цилиндры ПТ низкого и высокого давления. 20 - конденсатор. 21 - станционная или индивидуальная градирня. 22 - циркуляционный насос. 23 - забор очищенного конденсата ПС на собственные нужды, СН. 24 - конденсатосборник. 25 - конденсатный насос ПТУ. 26 - общая конденсатная линия. 27 - регулятор расхода. 28 - трубопровод на котел. 29 - трубопровод на КТУ. 30 - поддон и резервуар для слива и сбора конденсата продуктов сгорания, ПС. 31 - бак запаса конденсата. 32 - дренажный насос. 33 - модуль ХВП (обработки конденсата ПС). 34 - бак запаса очищенного конденсата ПС. 35 - насос в контуре очищенного конденсата ПС. 36 - главный газоход. 37 - шибер главного газохода. 38 - байпасный канал. 39 - шибер байпасного канала.

На схеме Фиг. 1 показана ПГУ, оборудованная известной системой испарительного охлаждения, СИО, воздуха на входе в компрессор с распылом воды посредством форсунок; узел смонтирован в КВОУ.

Применим и известный процесс STIG (Steam Injection Gas) - с инжекцией пара в газовый тракт ГТУ (см. [1]).

Предусматриваются теплофикационный отбор 12 пара НД, забор 23 на СН.

Температура конденсата в ПТУ - от 20 до 40°С. Температура TP точки росы ПС природного газа 50-55°С. В случае же впрыска воды или пара, т.е. образования парогазовой смеси, ПГС, высокой влажности, значение TP повышается и в данных условиях достигает величины порядка 60-65°С. Это интенсифицирует теплообмен, обеспечивается в КТУ конденсацию содержащихся в ПС паров воды, а именно: 1. влаги наружного воздуха; 2. внесенных с впрыском воды или пара в газовый тракт; 3. образующихся при сжигании природного газа. По мере конденсации, с уменьшением влажности ПГС, значение TP снижается, весь конденсат высадить (т.е осушить ПГС) невозможно, на выходе из КТУ влагосодержание смеси определяется ее термодинамическим равновесием при фактической температуре (порядка 40°С) и давлении (немного ниже атмосферного под тягой дымовой трубы и выше - при работе на нагнетательной стороне с дымосом). Таким образом, вода всех водяных паров возвращается в цикл, а избыток воды расходуется на СН, в основном на подпитку котла - через регулируемый отвод 23.

Конденсат ПС стекает по трубкам теплообменника 13, сливается в поддон 30, самотеком поступает в бак запаса конденсата 31, оттуда насосом 32 откачивается и подается на модуль ХВП - обработки (очитки) конденсата ПС 33. Дешевая, надежная технология очистки конденсата ПС природного газа, ПТ, (многолетняя эксплуатация котлов конденсационного типа за рубежом и у нас) включает дегазацию (деаэрацию) и декарбонизацию. Для нейтрализации небольших объемов используют сменные доломитовые наполнители (блоки с гранулятом), а больших - контейнеры с дозирующими устройствами для каустической соды (устройства жидкой нейтрализации). Вода впрыска требует, кроме того, деминерализации - обессоливания и фильтрации (штатные технологии ХВО котельных и электростанций).

Тепловую мощность КТУ, температуру ПС за КТУ регулируют байпасированием (Фиг. 2, 3, 4). Предложенное устройство байпаса с общей стенкой камеры с КТУ и байпасного канала делает конструкцию компактной, дешевой, экономичной, минимизирует теплопотери.

Повышение аэродинамического сопротивления тракта (теплообменник на пути ПС, байпас, шиберы) практически компенсируется его снижением за счет уменьшения объемов ПС благодаря убыванию расхода топлива и, главным образом, удалению водяных паров.

Небольшой брызгоунос за КТУ неизбежен (до 5%). Применяются капле -уловители 15 различного типа: стационарные, инерционные и простейшие - фильтры (в т.ч. самоочищающиеся): сетки, жалюзи, решетки и др.

Материал рабочих поверхностей теплообменника, газового тракта и дымовой трубы - коррозионностойкие нержавеющие стали и сплавы и пр., это общепринятая практика.

Система работает как с узлом глубокой утилизации, ГУ, так и без нее: газоход перекрывают шибером 37 (Фиг. 2), и ПС направляют в байпасный канал 38. а конденсат пара из конденсатора ПТ напрямую подают в котел (Фиг. 1).

В схеме реализуется практически безотходный процесс - материально и энергетически благодаря замкнутому водо-паро-газовому контуру.

Как показал оценочный расчетный анализ объекта по данным [3] для условий ПГУ-80, степень байпасирования, достаточная для сохранения в цикле воды впрыска 4,5 м3/ч, составляет Ψ=0,6. С учетом брызгоуноса и прочих потерь воды приняли Ψ=0,55, доля ПС, проходящих через узел ГУ (КТУ), равна 1-Ψ=0,45; тепловая нагрузка (мощность) КТУ составит 2,72 Гкал/ч. Это количество утилизированного в КТУ, т.е. сэкономленного тепла, или примерно 340 м3/ч природного газа (ПГ). Оно возвращается в котел с конденсатом либо в технологическую схему объекта, а в случае работы котла с дожиганием составляет чистую экономию газа дожигания. Таким образом, приведенный удельный выигрыш в тепле 2,72/60=0,045 Гкал в час на один МВт электрической мощности ГТУ.

В результате, в режиме дожигания, с коэффициентом расхода воздуха.на выходе из котла α=1,3 получили расчетные ожидаемые данные: нагрев конденсата на 30°С, температурный напор в теплообменнике 37,5°С, температура ПС - смеси за КТУ 87°С (исключается конденсация в тракте), площадь поверхности теплообмена F=1406 м2.

Полученные параметры вполне реализуемы, вписываются в рамки обычных режимов работы. Заметных технических трудностей в реализации предлагаемой ПГУ (расчет, устройство, работа, стандартное оборудование, проектирование и пр.) нет. Применение современных теплообменных аппаратов с высокой компактностью и интенсивностью теплообмена (развитые поверхности, турбулизаторы и пр.) резко снизит площадь нагрева.

Области применения данного решения: ПГУ бинарного типа в любом составе: ПГУ-ТЭЦ (ТЭС, РТС, мини-ТЭЦ и пр.), газотурбинные приводы компрессоров газоперекачивающих, ГПС, и дожимных компрессорных, ДКС, станций магистральных газо- и нефтепроводов, при проектировании и создании новых и совершенствовании (реконструкции, модернизации) существующих ПГУ.

В предлагаемой ПГУ достигаются:

- 1. исключение потери воды с впрыском воды или пара: Получение при этом избыточной воды актуально для засушливых и безводных районов с жарким и сухим климатом, т.е. там, где как раз наиболее востребовано охлаждение компримируемого воздуха ГТУ.

- 2. максимальная энергоэффективность - за счет глубокой утилизации. Удельная экономия тепла в пределах от 0,045 до 0,1 Гкал в час на один МВт мощности ГТУ.

- 3. экологический эффект - вплоть до экологически чистого процесса благодаря: снижению расхода топлива, но главным образом - орошению ПС капельной влагой, конденсатом, при прохождении ПС через КТУ (промывка отходящих газов, растворение оксидов в ПС).

Конденсация локализуется в одном месте - в камере КТУ, устраняется или сводится к минимуму конденсация в газовом тракте и дымовой трубе, улучшаются условия их службы, отпадает необходимость в рециркуляции дымовых газов для предотвращения конденсации, в установке водоводяного теплообменника в замкнутом контуре с котлом (в известных ПГУ).

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Е.Г. Шадек. Патент №2607574, 16.02.2015. Комбинированная парогазовая установка с инжекцией пара в газовый тракт с применением трансформатора тепла и способ ее работы (аналог).

2. В.Д. Буров, Е.В. Дорохов, Д.П. Едизаров и др. Тепловые электрические станции. М, МЭИ, 2005, с. 380. (прототип).

3. Березинец П.А., Ольшанский Г.Г. Перспективные технологии и установки производства тепловой и электрической энергии. 6,2 Газотурбинные и парогазовые установки. 6.2.2.ПГУ. Современные природоохранные технологии в энергетике. Инженерный сборник. Изд. Дом МЭИ. М., 2007 г.

Похожие патенты RU2700843C1

название год авторы номер документа
КОМБИНИРОВАННАЯ ПАРОГАЗОВАЯ УСТАНОВКА НА БАЗЕ ТРАНСФОРМАТОРА ТЕПЛА С ИНЖЕКЦИЕЙ ПАРА В ГАЗОВЫЙ ТРАКТ 2015
  • Шадек Евгений Глебович
RU2607574C2
СПОСОБ И СИСТЕМА ГЛУБОКОЙ УТИЛИЗАЦИИ ТЕПЛА ПРОДУКТОВ СГОРАНИЯ КОТЛОВ ЭЛЕКТРОСТАНЦИЙ 2015
  • Шадек Евгений Глебович
RU2607118C2
СПОСОБ УТИЛИЗАЦИИ ТЕПЛА В ПАРОГАЗОВОЙ УСТАНОВКЕ КОНТАКТНОГО ТИПА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Шадек Е.Г.
  • Штеренберг В.Я.
  • Масленников В.М.
  • Ики Норихико
  • Цалко Э.А.
  • Выскубенко Ю.А.
  • Кашфразиев Ю.А.
RU2211343C1
СПОСОБ РЕГЕНЕРАЦИИ ТЕПЛА В ПАРОГАЗОВОМ ЦИКЛЕ И ПАРОГАЗОВАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Шадек Е.Г.
  • Штеренберг В.Я.
  • Масленников В.М.
  • Цалко Э.А.
  • Выскубенко Ю.А.
  • Кашфразиев Ю.А.
  • Лавров В.С.
RU2179248C1
ТЕПЛОЭЛЕКТРОСТАНЦИЯ С КОНТУРОМ ORC-МОДУЛЯ И С ТЕПЛОВЫМ НАСОСОМ И СПОСОБ ЕЁ РАБОТЫ 2015
  • Шадек Евгений Глебович
RU2662259C2
КОМБИНИРОВАННАЯ СИСТЕМА ОТОПЛЕНИЯ И ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ С ГЛУБОКОЙ УТИЛИЗАЦИЕЙ ТЕПЛА ПРОДУКТОВ СГОРАНИЯ КОТЛА И СПОСОБ ЕЁ РАБОТЫ 2017
  • Шадек Евгений Глебович
RU2667456C1
СПОСОБ ПОВЫШЕНИЯ КПД ПАРОГАЗОВОЙ ЭНЕРГОУСТАНОВКИ 2005
  • Кириленко Виктор Николаевич
RU2334112C2
СПОСОБ КОМБИНИРОВАННОЙ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ, ТЕПЛА И ХОЛОДА В ПАРОГАЗОВОЙ УСТАНОВКЕ С ИНЖЕКЦИЕЙ ПАРА И ПАРОГАЗОВАЯ УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Масленников Виктор Михайлович
  • Батенин Вячеслав Михайлович
  • Выскубенко Юрий Александрович
  • Цалко Эдуард Альбертович
  • Штеренберг Виктор Яковлевич
RU2611921C2
Парогазовая установка электростанции 2021
  • Кудинов Анатолий Александрович
  • Зиганшина Светлана Камиловна
  • Кудинов Евгений Анатольевич
  • Валеева Эльвира Фаридовна
RU2777999C1
УСТАНОВКА ЭНЕРГООБЕСПЕЧЕНИЯ С КОМПЛЕКСНОЙ УТИЛИЗАЦИЕЙ ОТХОДОВ ПРЕДПРИЯТИЙ НЕФТЕГАЗОВОГО СЕКТОРА 2018
  • Кульбякина Александра Викторовна
  • Озеров Никита Алексеевич
RU2713936C1

Иллюстрации к изобретению RU 2 700 843 C1

Реферат патента 2019 года ПАРОГАЗОВАЯ УСТАНОВКА С ГЛУБОКОЙ УТИЛИЗАЦИЕЙ ТЕПЛА ОТХОДЯЩИХ ГАЗОВ

Изобретение относится к энергетике, направлено на совершенствование парогазовых установок (ПГУ) и может использоваться при проектировании и создании новых и модернизации существующих энергоустановок. Парогазовая установка с глубокой утилизацией тепла отходящих газов содержит газотурбинную установку, котел-утилизатор, паротурбинную установку, конденсационный теплообменник-утилизатор тепла отходящих газов. Газотурбинная установка включает газовую турбину, многоступенчатый турбокомпрессор, камеру сгорания и электрогенератор. Паровой котел-утилизатор с газовым трактом оборудован шиберами и дымовой трубой. Паротурбинная установка состоит из паровой турбины с конденсатором, снабженным конденсатосборником, электрогенератора, градирни в контуре конденсатора и насосов - питательного, циркуляционного и конденсатного. Вход теплообменника-утилизатора соединен с конденсатосборником конденсатора паровой турбины, а выход - с линией подачи конденсата от конденсатосборника конденсатора паровой турбины в котел-утилизатор. Заявленная энергоустановка обеспечивает многократный эффект: исключены потери воды с впрыском воды или пара, максимальная энергоэффективность, экологический эффект, устраняется конденсация в газовом тракте и дымовой трубе, улучшаются условия их службы, отпадает необходимость в рециркуляции дымовых газов для предотвращения конденсации в контуре с водоводяным теплообменником. 4 ил.

Формула изобретения RU 2 700 843 C1

Парогазовая установка с глубокой утилизацией тепла отходящих газов, содержащая:

газотурбинную установку, включающую газовую турбину, многоступенчатый турбокомпрессор, камеру сгорания и электрогенератор;

паровой котел-утилизатор с газовым трактом, оборудованным шиберами и дымовой трубой,

паротурбинную установку, состоящую из паровой турбины с конденсатором, снабженным конденсатосборником, электрогенератора, градирни в контуре конденсатора и насосов - питательного, циркуляционного и конденсатного;

конденсационный теплообменник-утилизатор тепла отходящих газов,

отличающаяся тем, что

вход теплообменника-утилизатора соединен с конденсатосборником конденсатора паровой турбины, а выход - с линией подачи конденсата от конденсатосборника конденсатора паровой турбины в котел-утилизатор.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700843C1

ПАРОГАЗОВАЯ УСТАНОВКА 1995
  • Верткин М.А.
RU2100619C1
US 4503682 А, 12.03.1985
Оптический способ профилирования шахт 1959
  • Балабин В.С.
  • Попий М.П.
  • Смирнов В.И.
SU127818A1
ТРИГЕНЕРАЦИОННАЯ УСТАНОВКА НА БАЗЕ МИКРОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Фирсова Екатерина Васильевна
  • Соколов Виталий Юрьевич
  • Садчиков Алексей Викторович
  • Горячев Сергей Вениаминович
  • Наумов Сергей Александрович
  • Сологуб Ирина Васильевна
RU2487305C1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 700 843 C1

Авторы

Шадек Евгений Глебович

Даты

2019-09-23Публикация

2018-04-09Подача