Однако указанное устройство обеспечивает только статическую селекцию оптических сигналов по длинам волн, имеет ограниченную апертуру, поскольку изготавливается непосредственно на сколе оптического волокна, имеет ограниченные возможности слоев избирательной части зеркала, за счет небольшого диапазона изменения показателей преломления слоев.
Наиболее близким по технической сущности и выбранным в качестве прототипа является "Устройство спектральной фильтрации диффузного излучения", патент РФ 2511036, где представлена технология формирования чередующихся слоев диэлектрика с большими и меньшими коэффициентами преломления посредством регистрации в фотополимере встречным, когерентным, равным по интенсивности излучением, монохроматизированным до необходимого уровня. Образовавшаяся во встречных пучках световой волны структура формирует посредством экспозиции периодический по коэффициенту показателя преломления интерференционный фильтр.
Недостатком этого аналога является ограниченные технические характеристики, заключающиеся в их статических параметрах, большом затухании падающего излучения, пассивная селекция оптических сигналов.
Задачей (техническим результатом) предлагаемого изобретения является обеспечение динамической узкополосной фильтрации оптического сигнала по амплитуде, фазе, частоте, обеспечение высокой глубины модуляции с достижением 100% отражения света зеркалом, увеличение апертуры устройства.
Поставленная задача достигается тем, что в устройство спектральной фильтрации диффузного излучения введены: голограмма, в которой сформированы чередующиеся слои диэлектрика с большими и меньшими коэффициентами преломления, зарегистрированная по схеме Ю.Н. Денисюка во встречных пучках на низкомолекулярных жидких кристаллах, заключенных в полимерную матрицу, основной и дополнительный пьезоэлементы подключенные к источнику переменного напряжения, упор, на дополнительном пьезоэлементе закреплена голограмма, зарегистрированная на низкомолекулярных жидких кристаллах, заключенных в полимерную матрицу, голограмма расположена между стеклянными подложками с нанесенными на них прозрачными электродами и представляет собой слоистую структуру параллельную плоскости электродов, одна поверхность которой посредством упора зафиксирована относительно подложки с прозрачными электродами.
На фиг. 1 изображена схема предлагаемого селективного зеркала, на фиг. 2 представлена схема регистрации голограммы.
Предлагаемое устройство (фиг. 1) содержит: 1 - стеклянные подложки, 2 - прозрачные электроды, 3 - основной пьезоэлемент для регулирования положения стеклянных подложек с прозрачными электродами, 4 - дополнительный пьезоэлемент для механического воздействия на толщину голограммы, 5 - стеклянные подложки голограммы, с нанесенными на них прозрачными электродами, 6 - голограмма со слоистой структурой, записанная во встречных пучках по схеме Ю.Н. Денисюка на низкомолекулярных нематических жидких кристаллах, заключенных в полимерную матрицу, представляющая собой чередующиеся слои диэлектрика с большими и меньшими коэффициентами преломления как было показано в [1], 7 - упор, фиксирующий одну плоскость голограммы относительно стеклянной подложки 1 с прозрачными электродами для обеспечения механического сжатия или растяжения толщины голограммы, зеркальное покрытие 8. На фиг. 2 представлена схема регистрации голограммы - основного элемента селективного зеркала с перестраиваемой полосой пропускания. Это голограмма со слоистой структурой, записанной во встречных пучках по схеме Ю.Н. Денисюка на низкомолекулярных нематических жидких кристаллах, заключенных в полимерную матрицу. При голографической записи по схеме Ю.Н. Денисюка излучение лазера для записи голограммы 9 проходит через стеклянные подложки голограммы, с нанесенными на них прозрачными электродами 5, область голограммы, в которой находится предполимерная композиция 10, отражается зеркальным покрытием 11, нанесенным на плоскую стеклянную пластину 12 в виде излучения 13. В области 10 образуется стационарное интерференционное поле как в липмановской фотографии, которое регистрируется в виде пространственно - периодической структуры, формируемой в результате процесса пространственно - неоднородной фотополимеризации предполимерной композиции. В результате возникают чередующиеся слои диэлектрика с большими (богатыми капсулами нематического жидкого кристалла) 14 и меньшими (богатыми полимером) коэффициентами преломления. Плоскости пространственной структуры 14 параллельны плоскости зеркального покрытия 11 когда излучение 9 и 13 интерферируют в области голограммы 10.
Предлагаемое устройство работает следующим образом. Излучение, попадающее на селективное зеркало проходит, прозрачную стеклянную подложку 1, прозрачные электроды 2, стеклянные подложки голограммы, закрепленной на дополнительном пьезоэлементе 4, с нанесенными на них прозрачными электродами 5, саму голограмму 6, отражается от зеркального покрытия 8 нижней подложки. Слоистая структура голограммы аналогична слоистой структуре диэлектрических покрытий поверхности лазерных зеркал, чем обеспечивается фильтрация спектра падающего излучения и достигается узкая полоса пропускания излучения, обеспечивающая высокую разрешающую способность. Динамическая фильтрация осуществляется посредством механического сжатия или растяжения толщины голограммы дополнительным пьезоэлементом 4. Одна поверхность голограммы посредством упора 7 зафиксирована относительно стеклянной подложки 1 с прозрачными электродами 2 для обеспечения механического сжатия или растяжения толщины голограммы. Пьезоэлементы 3 подключены к источнику переменного напряжения, дополнительный пьезоэлемент 4 управляется ЭВМ. Апертура зеркала определяется диаметром элементов 1 и 5. Частота модуляции излучения определяется частотой колебания пьезоэлементов. За счет изменения расстояния между интерференционными слоями голограммы при механическом сжатии или растяжении толщины голограммы дополнительным пьезоэлементом реализуется 100% отражение излучения. Слоистая структура голограммы аналогична слоистой структуре диэлектрических покрытий поверхности лазерных зеркал, чем обеспечивается фильтрация спектра падающего излучения по амплитуде, фазе и частоте и достигается узкая полоса отраженного излучения.
Таким образом, подтверждается возможность решения поставленной задачи: создание селективного зеркала обеспечивающего высокую узкополосную фиксацию оптического сигнала по амплитуде, фазе, частоте, обеспечение высокой глубины модуляции с достижением 100% отражения света зеркалом за счет изменения расстояния между интерференционными слоями голограммы при механическом сжатии или растяжении голограммы, увеличение апертуры устройства.
Литература:
1. Стрельцов С.А. Спектральные характеристики отражательных голограмм, сформированных в жидкокристаллических композитах // Известия высших учебных заведений. Физика. - 2015. - Т. 58. - №5. - С. 71-76.
название | год | авторы | номер документа |
---|---|---|---|
ИНТЕРФЕРЕНЦИОННЫЙ СВЕТОФИЛЬТР | 2016 |
|
RU2655047C1 |
ГОЛОГРАФИЧЕСКИЙ ИНТЕРФЕРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ПЛОСКОЙ ПОВЕРХНОСТИ ЭЛЕМЕНТОВ ТВЕРДОТЕЛЬНОЙ ЭЛЕКТРОНИКИ | 2009 |
|
RU2406070C1 |
Голографический способ измерения усадки высокоразрешающих фотоэмульсионных слоев | 1981 |
|
SU989532A1 |
ИНФРАКРАСНЫЙ СВЕТОДИОД | 2022 |
|
RU2796327C1 |
АДАПТИВНЫЙ ПОЛЯРИЗАЦИОННЫЙ ФИЛЬТР | 2018 |
|
RU2681664C1 |
ПОЛИУРЕТАНОВЫЙ СОСТАВ И ЕГО ПРИМЕНЕНИЕ ДЛЯ ПОЛУЧЕНИЯ ГОЛОГРАФИЧЕСКИХ СРЕД | 2009 |
|
RU2518125C9 |
УЗКОПОЛОСНЫЙ ТОНКОПЛЕНОЧНЫЙ ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО | 1994 |
|
RU2078358C1 |
ПЕРЕКЛЮЧАЕМОЕ ЖИДКОКРИСТАЛЛИЧЕСКОЕ УСТРОЙСТВО С НИЗКОЙ МУТНОСТЬЮ ДЛЯ ИСПОЛЬЗОВАНИЯ В ПЕРЕКЛЮЧАЕМОМ ОКНЕ ИЛИ ПОДОБНОМ | 2017 |
|
RU2740691C2 |
Способ струйной печати бесцветными золь-гель чернилами радужных голографических изображений на голографической бумаге или на микроэмбоссированной поверхности и печатное изделие с радужным голографическим изображением | 2016 |
|
RU2616151C1 |
РЕНТГЕНОПРОФИЛОГРАФ АКТИВНОГО КОНТРОЛЯ | 2005 |
|
RU2304272C1 |
Изобретение относится к области оптического приборостроения, многослойных оптических фильтров, элементов квантовой электроники и может быть использовано для защиты от ослепляющего излучения, узкополосной фильтрации оптического излучения, создания зеркальных элементов с регулируемым коэффициентом отражения и пропускания и др. Селективное зеркало содержит чередующиеся слои диэлектрика с большими и меньшими коэффициентами преломления, полученные посредством регистрации в фотополимере встречным когерентным, равным по интенсивности излучением, монохроматизированным до необходимого уровня. В него введены голограмма, в которой сформированы чередующиеся слои диэлектрика с большими и меньшими коэффициентами преломления, зарегистрированная по схеме Денисюка во встречных пучках на низкомолекулярных жидких кристаллах, заключенных в полимерную матрицу, основной и дополнительный пьезоэлементы, подключенные к источнику переменного напряжения, упор. На дополнительном пьезоэлементе закреплена голограмма, зарегистрированная на низкомолекулярных жидких кристаллах, заключенных в полимерную матрицу, голограмма расположена между стеклянными подложками с нанесенными на них прозрачными электродами и представляет собой слоистую структуру, параллельную плоскости электродов, одна поверхность которой посредством упора зафиксирована относительно подложки с прозрачными электродами. Технический результат – обеспечение узкополосной фильтрации оптического сигнала, высокой глубины модуляции. 2 ил.
Селективное зеркало, содержащее чередующиеся слои диэлектрика с большими и меньшими коэффициентами преломления, полученные посредством регистрации в фотополимере встречным когерентным, равным по интенсивности излучением, монохроматизированным до необходимого уровня, отличающееся тем, что в него введены: голограмма, в которой сформированы чередующиеся слои диэлектрика с большими и меньшими коэффициентами преломления, зарегистрированная по схеме Ю.Н. Денисюка во встречных пучках на низкомолекулярных жидких кристаллах, заключенных в полимерную матрицу, основной и дополнительный пьезоэлементы, подключенные к источнику переменного напряжения, упор, при этом на дополнительном пьезоэлементе закреплена голограмма, зарегистрированная на низкомолекулярных жидких кристаллах, заключенных в полимерную матрицу, голограмма расположена между стеклянными подложками с нанесенными на них прозрачными электродами и представляет собой слоистую структуру, параллельную плоскости электродов, одна поверхность которой посредством упора зафиксирована относительно подложки с прозрачными электродами.
US 6950227 B2, 27.09.2005 | |||
KR 101738275 B1, 23.05.2017 | |||
CN 107340593 A, 10.11.2017. |
Авторы
Даты
2019-09-25—Публикация
2018-01-09—Подача