ДАТЧИК АЭРОМЕТРИЧЕСКИХ ДАВЛЕНИЙ Российский патент 2019 года по МПК G01L7/08 G01L11/02 

Описание патента на изобретение RU2702808C1

Изобретение относится к контрольно - измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода.

В распространенных в настоящее время частотных преобразователях давления (Авиационные приборы и пилотажно-навигационные комплексы: учеб.пособие. В 2 ч./сост. Е.В. Антонец, В.И. Смирнов, Г.А. Федосеева. - Ч. 1. - Ульяновск: УВАУ ГА, 2007. - 119 с.) изменение измеряемого давления (или разности давлений) вызывает изменение частоты колебаний чувствительного элемента (ЧЭ), в качестве которых используются натянутая струна, тонкостенный цилиндрический резонатор и тому подобные элементы. Изменение частоты колебаний ЧЭ приводит к изменению частоты выходного сигнала преобразователя. Частотные преобразователи обладают преимуществом перед электромеханическими преобразователями давления, потому что частота сигнала практически не изменяется при его усилении и передаче по линиям связи от преобразователя к потребителям или соответствующим указателям. Данные устройства конструктивно выполнены в виде генераторных датчиков давления типа ДДГ, которые, в частности, используются в цифровых системах воздушных сигналов, предназначенных для измерения высотно-скоростных параметров полета самолета и выдачи результатов измерения потребителям.

Известен барометрический высотомер (Патент РФ №1426187, G01C 5/00, G01C 5/06, 10.06.2005 г.), содержащий последовательно соединенные преобразователь давления в частоту импульсов тока, формирователь интервала счета, двоичный многоразрядный счетчик с входами предварительной установки и выходной регистр, управляющий вход которого соединен с выходом формирователя интервала счета, генератор опорной частоты и схему. И, первый и второй входы которой соединены соответственно с выходами генератора опорной частоты и формирователя интервала счета.

Существенными недостатками частотных преобразователей давления являются: высокая зависимость от стабильности частоты питающего напряжения и чувствительность к механическим вибрациям; появление температурных погрешностей датчика и относительно большие энергетические затраты, вызванные наличием специального электромагнитного возбудителя колебаний; постоянный уход метрологических характеристик упругого элемента, определяемый большим числом колебаний.

Известно также устройство для измерения барометрических вертикальной скорости и высоты полета (Патент РФ №1292447, G01P 3/489, 10.06.2005 г.), содержащее барометрический высотомер, подключенный выходом к первому входу первого вычитателя непосредственно и ко второму входу первого вычитателя через последовательно соединенные первый, второй и третий элементы задержки, второй вычитатель, подсоединенный первым входом к выходу первого элемента задержки, вторым входом к выходу второго элемента задержки и выходом к первому входу первого сумматора, соединенного вторым входом с выходом первого вычитателя, и выходные шины.

Данное устройство обладает, по сравнению с предыдущим, более высокой точностью измерений за счет уменьшения динамической и флуктуационной погрешностей, однако ему также присущи все вышеперечисленные недостатки частотных преобразователей давления.

Прототипом предлагаемого датчика может служить датчик давления, использующий оптический метод преобразования информации (заявка РФ на изобретение №2017111362 от 04.04.2017 года), содержащий корпус, который имеет два отверстия, сообщающиеся с измеряемой средой и внутри которого размещен анероидный чувствительный элемент, образованный двумя мембранами. В устройство дополнительно введены источник излучения, закрепленный на стойке, и две шторки с прорезями, закрепленные на той же стойке, а также две фотоприемные линейки, причем мембраны чувствительного элемента разделены на верхнюю и нижнюю и герметично по периметру прикреплены к корпусу, образуя безвоздушный зазор, при этом отверстия корпуса расположены выше и ниже зазора, стойка размещена внутри зазора и прикреплена к корпусу, а фотоприемные линейки, также размещенные в зазоре, прикреплены соответственно к верхней и нижней мембранам и обращены к соответствующим прорезям шторок.

Недостатком данного устройства является то обстоятельство, что в нем упругие чувствительные элементы (мембраны), воспринимающие действие сил растяжения и сжатия, не в полной мере используют линейную часть упругой характеристики чувствительного элемента. Учитывая, что действие закона Гука осуществляется при малых деформациях, указанный недостаток существенно снижает чувствительность датчика и точность измерения при малых давлениях.

Технической задачей предлагаемого изобретения является создание датчика аэрометрических давлений.

Технический результат - повышение чувствительности и точности измерения давления и по высоте, и по скорости полета воздушного судна, а так же повышение функциональных возможностей упругого чувствительного элемента.

Указанный технический результат достигается тем, что в устройство, содержащее корпус, внутри которого размещен анероидный чувствительный элемент, образованный верхней и нижней мембранами, причем корпус имеет два, соединенных с измеряемой средой, отверстия, источник излучения, закрепленный на стойке и две шторки с прорезями, закрепленные на той же стойке, а также две фотоприемные линейки, при этом в геометрических центрах верхней и нижней мембран с их внешних сторон прикреплены ферромагнитные элементы, причем на внутренней поверхности корпуса соосно и с зазором, по отношению к введенным ферромагнитным элементам, установлены постоянные магниты.

Сущность изобретения поясняется схемой устройства, представленного на чертеже. Устройство содержит корпус 1 с двумя отверстиями, соответственно для измерения статического (Рст) и полного (Рполн) давлений. Мембраны 2 и 3 разнесены по высоте, образуя зазор, из которого выкачан воздух, и герметично по периметру прикреплены к корпусу. Отверстия для измерения статического и полного давлений размещены выше и ниже зазора. В геометрических центрах мембран 2 и 3 установлены ферромагнитные элементы 4 и 5, напротив которых с зазорами, на внутренней поверхности корпуса установлены постоянные магниты 6 и 7. Внутри безвоздушного зазора к стойке 8 прикреплены источник излучения 9, а также верхняя и нижняя шторки 10 с прорезями 11. Две фотоприемные линейки 12 крепятся к верхней 2 и нижней 3 мембранам.

Работа устройства осуществляется следующим образом. В исходном состоянии мембраны 2 и 3 занимают определенное положение, определяемое предельными значениями их рабочих деформаций на сжатие и растяжение при изменениях статического и полного давлений. Это состояние достигается при равенстве упругих сил мембран, а также сил притяжения между постоянными магнитами 6, 7 и феромагнитными элементами 4, 5. Сила притяжения между постоянными магнитами 6, 7 и феромагнитными элементами 4, 5, при их заданных характеристиках, зависит от расстояния между ними.

Оптическая энергия от источника излучения 9 через прорези 11 шторок 10 попадает в виде оптических пятен на фотоприемные линейки 12. В фотоприемных линейках 12 отдельные фоточувствительные элементы (пиксели) расположены вдоль одной координаты. Принцип работы данных устройств заключается в формировании внутри каждого пикселя электрического сигнала, пропорционального поглощенной им оптической энергии. Достигается это благодаря фоточувствительному р-n переходу (как и в обычном фотодиоде), через который происходит разряд конденсатора фотоприемного элемента. Чем больше будет оптическая мощность, попадающая на пиксель, тем больше будет ток фотодиода и, следовательно, тем быстрее будет разряжаться конденсатор. В конце цикла измерения происходит считывание остаточного заряда конденсаторов пикселей.

При изменениях статического (Рст) и (или) полного (Рполн) давлений, мембраны 2 и 3 деформируются на величину, определяемую значениями соответствующих давления и изменяющейся силы притяжения между соответствующими постоянными магнитами 6, 7 и ферромагнитными элементами 4, 5. По мере уменьшения статического (Рст) и (или) полного (Рполн) давлений мембраны 2 и 3 работают на растяжение, уменьшая зазор и увеличивая силы притяжения между постоянными магнитами 6, 7 и ферромагнитными элементами 4, 5, обеспечивая равную, во всем диапазоне измерений, чувствительность мембран к изменению давлений.

По мере увеличения статического (Рст) и (или) полного (Рполн) давлений мембраны 2 и 3 уменьшают значение деформации как за счет возрастающих давлений, так и ослабевающей силы притяжения между магнитами 6, 7 и ферромагнитными элементами 4, 5, также обеспечивая равную чувствительность мембран к изменению давлений. После прохождения заданного исходного положения, мембраны 2 и 3 начинают сжиматься, при этом значения сил притяжения между магнитами и ферромагнитными элементами оказывают значительно меньшее влияние, и мембраны прогибаются в основном за счет возрастающих статического (Рст) и (или) полного (Рполн) давлений.

Фотоприемные линейки 12, прикрепленные к этим мембранам, смещаются, вызывая перемещения на них оптических пятен от источника излучения 9 через прорези 11 шторок. При последовательном опросе пикселей на выходе фотоприемных многоэлементных устройств будет формироваться электрический сигнал, у которого изменение амплитуды во времени отображает распределение оптической мощности в пространстве фотоприемного устройства. Иными словами, на выходе фотоприемных устройств будут формироваться цифровые сигналы пропорциональные соответственно статическому и полному давлениям.

Таким образом, введение в конструкцию корпуса датчика аэрометрических давлений постоянных магнитов, взаимодействующих с ферромагнитными элементами, позволит линеаризовать зависимость деформаций мембран от воспринимаемых давлений. В результате произойдет повышение чувствительности и точности измерения давления и по высоте, и по скорости полета воздушного судна, а так же расширятся функциональные возможности упругого чувствительного элемента. Предлагаемый датчик, обладая всеми достоинствами прототипа, позволяет значительно повысить точность измерения нелинейно изменяющегося давления (статического и полного), а также повышает функциональную эффективность упругих чувствительных элементов.

Похожие патенты RU2702808C1

название год авторы номер документа
ДАТЧИК ДАВЛЕНИЯ, ИСПОЛЬЗУЮЩИЙ ОПТИЧЕСКИЙ МЕТОД ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ 2017
  • Антонец Иван Васильевич
  • Горшков Геннадий Михайлович
  • Борисов Руслан Андреевич
RU2653596C1
ДАТЧИК АЭРОМЕТРИЧЕСКИХ ДАВЛЕНИЙ 2019
  • Антонец Иван Васильевич
  • Борисов Руслан Андреевич
  • Горшков Геннадий Михайлович
  • Шайхутдинов Булат Рутстемович
RU2736736C1
ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ ОКРУЖАЮЩЕГО И НАБЕГАЮЩЕГО ВОЗДУШНЫХ ПОТОКОВ НА ЛЕТАТЕЛЬНЫХ АППАРАТАХ 2022
  • Антонец Иван Васильевич
  • Борисов Руслан Андреевич
  • Милашкин Алексей Александрович
  • Нигматуллина Лилия Ауфатовна
  • Горшков Геннадий Михайлович
RU2796818C1
Датчик давления, использующий оптический метод преобразования информации 2022
  • Антонец Иван Васильевич
  • Борисов Руслан Андреевич
  • Кротов Александр Викторович
  • Насонов Денис Александрович
  • Нигматуллина Лилия Ауфатовна
  • Горшков Геннадий Михайлович
RU2785033C1
ДАТЧИК СТАТИЧЕСКОГО И ПОЛНОГО ДАВЛЕНИЙ 2020
  • Антонец Иван Васильевич
  • Борисов Руслан Андреевич
  • Горшков Геннадий Михайлович
  • Нигматуллина Лилия Ауфатовна
RU2762543C1
ДАТЧИК АЭРОМЕТРИЧЕСКИХ ДАВЛЕНИЙ 2017
  • Антонец Иван Васильевич
  • Борисов Руслан Андреевич
  • Горшков Геннадий Михайлович
  • Черторийский Алексей Аркадьевич
RU2684683C1
ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ ОКРУЖАЮЩЕГО И НАБЕГАЮЩЕГО ВОЗДУШНЫХ ПОТОКОВ НА ЛЕТАТЕЛЬНЫХ АППАРАТАХ 2024
  • Антонец Иван Васильевич
  • Борисов Руслан Андреевич
  • Черторийский Алексей Аркадьевич
  • Каштанов Никита Валерьевич
  • Курносов Денис Владимирович
RU2827305C1
Датчик аэрометрических давлений 2019
  • Антонец Иван Васильевич
  • Борисов Руслан Андреевич
  • Черторийский Алексей Аркадьевич
RU2712777C1
МИКРОБАРОГРАФ 1992
  • Ашмарин Геннадий Владимирович[Kg]
  • Бурдин Борис Юрьевич[Kg]
  • Скиба Илья Николаевич[Kg]
RU2029933C1
Барометрический датчик высоты летательного аппарата 1987
  • Овчинников Леонид Анатольевич
SU1527496A1

Иллюстрации к изобретению RU 2 702 808 C1

Реферат патента 2019 года ДАТЧИК АЭРОМЕТРИЧЕСКИХ ДАВЛЕНИЙ

Изобретение относится к контрольно-измерительной технике и может быть применено для измерения высоты и скорости полета воздушных судов на основании использования аэрометрического метода. Заявлен датчик аэрометрических давлений , включающий корпус, внутри которого размещен анероидный чувствительный элемент, образованный верхней и нижней мембранами, причем корпус имеет два соединенных с измеряемой средой отверстия, источник излучения, закрепленный на стойке, и две шторки с прорезями, закрепленные на той же стойке, а также две фотоприемные линейки. При этом в геометрических центрах верхней и нижней мембран с их внешних сторон прикреплены ферромагнитные элементы, причем на внутренней поверхности корпуса соосно и с зазором по отношению к введенным ферромагнитным элементам установлены постоянные магниты. Технический результат - повышение чувствительности и точности измерения давления и по высоте, и по скорости полета воздушного судна, а также повышение функциональных возможностей упругого чувствительного элемента. 1 ил.

Формула изобретения RU 2 702 808 C1

Датчик аэрометрических давлений, содержащий корпус, внутри которого размещен анероидный чувствительный элемент, образованный верхней и нижней мембранами, причем корпус имеет два соединенных с измеряемой средой отверстия, источник излучения, закрепленный на стойке, и две шторки с прорезями, закрепленные на той же стойке, а также две фотоприемные линейки, отличающийся тем, что в геометрических центрах верхней и нижней мембран с их внешних сторон прикреплены ферромагнитные элементы, причем на внутренней поверхности корпуса соосно и с зазором по отношению к введенным ферромагнитным элементам установлены постоянные магниты.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702808C1

ДАТЧИК ДАВЛЕНИЯ, ИСПОЛЬЗУЮЩИЙ ОПТИЧЕСКИЙ МЕТОД ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ 2017
  • Антонец Иван Васильевич
  • Горшков Геннадий Михайлович
  • Борисов Руслан Андреевич
RU2653596C1
ДАТЧИК ДАВЛЕНИЯ С ЧАСТОТНЫМ ВЫХОДОМ 0
SU263231A1
US 4628403 A1, 09.12.1986
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ СВЕРХПРОВОДЯЩЕЙ ЛЕНТЫ И ЛЕНТА 2018
  • Манкевич Алексей Сергеевич
  • Маркелов Антон Викторович
  • Молодык Александр Александрович
  • Самойленков Сергей Владимирович
RU2696182C1
CN 105051512 A, 11.11.2015.

RU 2 702 808 C1

Авторы

Антонец Иван Васильевич

Борисов Руслан Андреевич

Горшков Геннадий Михайлович

Даты

2019-10-11Публикация

2018-08-30Подача