Изобретение относится к области гидротехники, а именно к устройству, предназначенному для защиты побережья от штормов путем обеспечения гашения волн на глубокой воде.
Известны волнозащитные сооружения в виде стационарных волноломов. Морские стационарные защитные сооружения предназначены для защиты берега, портов, марин, пляжей и прибрежных построек от разрушающего воздействия волн.
Стационарные волноломы рассеивают энергию волнения и создают внутри огороженного пространства участок спокойной воды, позволяя строить гавани, защищенные промышленные и рекреационные зоны.
Морские волноломы имеют множество вариантов конструкций в зависимости от области применения и функций. К ним относятся блочно-бетонные конструкции, блочно-монолитные, волноломы из тетраэдров, монолитные стационарные волноломы, комбинированные волноломы, усиленные отсыпкой горной породы и специальными железобетонными конструкциями, а также насыпные дамбы.
Гребни волноломов обычно значительно возвышаются над уровнем моря, однако существуют волноломы с заглубленным телом, когда их гребни скрыты под водой. Однако такие конструкции лишь сокращают энергию шторма, рассеивая максимум 50% энергии волн.
Все названные конструкции выполнены массивными, являются дорогостоящими и длительно возводимыми, при этом стоимость таких сооружений и сроки возведения резко возрастают с увеличением глубины моря в месте строительства, а на больших глубинах строительство таких конструкций теряет экономическую целесообразность. Поэтому территории с отлогим берегом, где глубина моря в районе уреза значительная, в настоящее время не имеют технологических вариантов защиты побережья от штормов.
Все известные стационарные волноломы сооружаются, как правило, в прибрежных зонах, где в физике ветровых волн происходят существенные изменения. При выходе волны к урезу воды, начиная с глубины, равной половине длины волны, скорость, длина и высота волны уменьшаются, но, начиная с глубины моря в 1/5 длины волны, высота волны возрастает, причем особенно быстро с глубины, равной 1/10 длины волны, после чего волна разрушается, образуя прибой.
При отлогом дне в месте расположения волнолома гребень значительных волн ударяет в стенку волнолома со всей энергией волны, образуя, так называемый, взброс. Прибой и, особенно, взброс обладают огромной энергией.
Известны факты разрушения береговых сооружений, сдвигов и даже переносов бетонных массивов массой в десятки и сотни тонн. Это обусловлено тем, что при прибое гребень волны срывается и становится переносной волной, вся масса воды приобретает не колебательное, а поступательное движение. Поэтому волноломы и берегозащитные сооружения, расположенные, как правило, в зоне деформации волн подвергаются значительному разрушительному воздействию штормов.
Кроме того, волноломы и дамбы оказывают значительное негативное влияние на экологию побережья в месте их строительства, поскольку создают предпосылки к заиливанию за волноломные пространства, нарушают водообмен и препятствуют миграции биоресурсов.
Известен гаситель морских волн, предназначенный для защиты береговой линии от штормов. Он имеет приемную плиту, бункер, защитную решетку и направляющую плиту, выполненную с возможностью подъема ветровых волн вверх (RU 2527030, кл. Е02В 3/06, опубликовано 27.08.2014).
По сути, известное сооружение также является стационарным волноломом с присущими морским волноломам недостатками, а именно: большой массой конструкции, сложным и долговременным возведением и непростой эксплуатацией в прибрежной зоне, где такие явления как прибой, взброс, рефракция и интерференция волн создадут серьезные проблемы, связанные со сдвигом конструкции, размывом основания, а также заиливанием наносами сопла и трубопроводов, входящих в конструкцию гасителя, что создаст непреодолимые проблемы для осуществления его функций.
Также известно устройство для защиты побережий от волн, которое может быть использовано для защиты населенных прибрежных территорий морей и океанов от ударного разрушительного воздействия волн цунами. Это устройство включает опорное основание с установленным на нем щитом, одним концом шарнирно закрепленное на горизонтальной оси с возможностью поворота вокруг нее. Опорное основание выполнено в виде открытой емкости (RU 2489544, кл. Е02В 3/04, опубликовано 10.08.2013).
Данное устройство не может использоваться для создания защищенных прибрежных акваторий портов, т.к. оно установлено на урезе воды и может использоваться лишь для трансформации волнового заплеска, когда волна фактически уже рассеяна. Гасить волну цунами на урезе воды данным устройством также не реально, так как на урезе воды высота волны цунами достигает максимальной величины.
Гашение и рассеивание волн наиболее эффективно может происходить на глубинах, где влияние дна не создает негативные трансформации в волновом процессе. Влияние дна на волновые процессы отсутствует, как правило, на глубинах примерно 50 метров. На таких глубинах строить стационарные волноломы технически и экономически нецелесообразно. В этом случае целесообразно использовать безопорные конструкции, динамично рассеивающие и диссипирующие волны.
К таким конструкциям можно отнести известный мобильный плавучий волногаситель, содержащий каркас, в который уложено несколько рядов труб, ориентированных перпендикулярно к продольной оси волногасителя (RU 2572563, кл. Е02В 3/04, опубликовано 20.01.2016).
Недостаток известного волногасителя состоит в том, что ряды труб должны опускаться на значительную глубину поскольку волновой процесс распространяется до половины длины волны. Длина ветровых морских волн высотой 4-5 метров и периодом 6-9 сек. может достигать 80-100 метров. Кроме того, гашение волн в известном волногасителе происходит за счет диссипации, рассеивания энергии волн в поверхностном слое, для этого трубы должны быть закреплены статически жестко. Конструкция волногасителя будет подвержена качке, при которой генерируется вторичная волна, которая будет распространяться за конструкцию. При подходе волн под углом или при боковом волнении, на конструкцию будет действовать опрокидывающий момент, при этом гашения волн происходить не будет.
Задача изобретения состоит в обеспечении защиты побережья от штормов путем гашения волны до того, как она обрушится на береговую линию, в т.ч. в обеспечении защиты отвесных берегов с заглубленным дном.
Технический результат изобретения состоит в создании простого, легкого и надежного приспособления, обеспечивающего гашение волны на глубокой воде с любого направления распространения волн.
Названный технический результат достигнут в изобретении с помощью следующей совокупности признаков.
Устройство гашения волны на глубокой воде содержит группу установленных по меньшей мере в один ряд элементов, обладающих плавучестью. Каждый из указанных элементов состоит из стержня, на одном конце которого закреплен поплавок, а на другом - погружной элемент. Каждый поплавок и погружной элемент имеют в плане прямоугольную форму. Соседние поплавки шарнирно соединены между собой и соседние погружные элементы также шарнирно соединены между собой.
Для усиления волногасящего эффекта группа элементов, обладающих плавучестью, может быть, установлена в несколько рядов, а поплавки и погружные элементы в соседних рядах шарнирно соединены между собой.
Изобретение поясняется чертежом, где на фиг. 1 схематично изображен единичный элемент, обладающий плавучестью; на фиг. 2 - устройство в рабочем положении; на фиг. 3 и 4 - варианты закрепления устройства; на фиг. 5 - устройство, состоящее из нескольких рядов элементов, обладающих плавучестью; на фиг. 6 - график и таблица, показывающие затухание волны на разных глубинах.
Для осуществления эффективного гашения волн на глубокой воде способом разделения волны на два потока, предназначено устройство защиты побережья от штормов, которое состоит из группы элементов 1, обладающих плавучестью, и расположенных в ряд заданной протяженности. Каждый элемент 1 включает расположенный сверху уплощенный поплавок 2 и расположенный снизу напротив поплавка уплощенный погружной элемент 3 в виде экрана, выполняющий функцию гидродинамического тормоза. Элемент 3 в виде экрана расположен на расчетной глубине от поверхности спокойного моря под поплавком 2. Элементы 2 и 3 соединены между собой жесткой связью в виде стержня 4. Нижняя часть элементов 1 в рабочем положении устройства расположена на значительной глубине от поверхности воды. Вместе они образуют демпфирующий блок устройства (фиг. 2).
Между собой элементы 2 соединены посредством шарниров 5, выполненных в виде гибких, эластичных связей, позволяющих этим элементам частично перемещаться на волнении друг относительно друга, учитывая особенности распространения нерегулярного волнения. Элементы 3, расположенные на глубине, также как элементы 2, соединены между собой гибкими шарнирным связями, образуя единую экранирующую площадь.
В одном ряду может располагаться не менее двух элементов 1, а их количество в ряду определяется шириной волнового фронта, который необходимо погасить. Количество рядов устройства определяется проектированием в зависимости от интенсивности и параметров волнения в предполагаемом месте расположения устройства (фиг. 5).
Устройство может закрепляться на больших глубинах при помощи тросов 6, прицепленных к массивным балластным блокам 7, погруженным на дно водоема (фиг. 3), или закрепляться шарнирно с помощью штанги 8 к свайным основаниям и опорам 9 (фиг. 4).
На удалении от берега на заданной глубине из рядов элементов 1 создают защитную линию, расположенную параллельно береговой линии, которую необходимо защитить. В связи с тем, что амплитуда волны с глубиной резко уменьшается (фиг. 6), набегающая на первый ряд элементов 1 волна не может поднять эти элементы на вершину, т.к. уплощенные элементы 3, расположенные на глубине, где амплитуда волны значительно ниже, чем на поверхности, препятствуют подъему всего демпфирующего блока вверх. Уплощенные элементы 3 выполнены в виде упругих пластин значительной площади и их подъему вслед за поплавками 2 мешает сопротивление масс воды. Причем, чем больше скорость распространения волн, тем больше сопротивление уплощенных пластин 3.
Вследствие того, что устройство, ввиду сопротивления подъему на гребень волны создаваемого элементом 3, остается по отношению к набегающей волне на уровне линии спокойного моря, верхняя масса воды с вершины волны захлестывает устройство и набегает на него, при этом нижний слой волны проходит в тоннель между верхней и нижней частями устройства, при этом происходит разделение волны на два потока.
В верхнем потоке волны участвует часть гребня, продолжая колебательное движение, при этом волны ведут себя как на урезе воды. Гребень волны догоняет впереди идущую подошву и обрушивается как при прибое.
В нижнем потоке волны изменяется скорость движения частиц воды, и волна деформируется, трансформируясь в течение.
При этом, при увеличении интенсивности шторма и, соответственно, увеличении высоты волны, передняя часть устройства частично притапливается, следующие за ней блоки занимают наклонное положение, сопротивляясь при этом притапливанию. Создается наклон общей плоскости защитной линии, составленной из демпфирующих блоков, который фактически имитирует пологую береговую линию, где наиболее эффективно происходит гашение волнения.
В этом случае можно рассчитать число рядов блоков и водоизмещение элементов 1, необходимых для того, чтобы при любой максимальной волне последние ряды блоков не подтапливались и угол наклона защитной линии не превышал 5-10 градусов, которые необходимы для эффективного разрушения гребней волнения.
На фиг. 6 схематично показан график затухания волны на разных глубинах и дана таблица, где:
1-я колонка: расчетный шаг (в таблице 10 шагов);
2-я колонка: шаг по глубине расчета (например, глубина моря 6 метров шаг по глубине расчета 1/2 соответствует глубине 3 метра или 9 расчетный шаг);
3-я колонка: λ - длина волны;
4-я колонка: h0 - высота волны на поверхности;
5-я колонка: Z - глубина распространения волны;
6-я колонка; h - высота волны на глубине Z.
Работа устройства основана на следующих физических принципах.
1. Снижение мощности волны в нижнем потоке за счет использования разницы амплитуды волнения на различных глубинах.
Волновые движения наиболее сильно проявляются на поверхности воды. С глубиной они быстро уменьшаются по экспоненциальному закону. Например, амплитуда колебательных движений в волне равна a⋅e-kH, где a - амплитуда волны на поверхности; H - глубина воды; - волновое число; λ - длина волны.
Если профиль волны на поверхности воды схематизировать в виде косинусоиды
где σ=2π/τ - круговая частота, τ - период волны, то вертикальная составляющая скорости частиц воды в волне будет равна:
Поэтому твердое тело, плавающее на поверхности воды, такое, как поплавок 2, в условной точке x=0, будет совершать вертикальные колебания с амплитудой а и скоростью
Если это тело жестко скреплено с другим телом, таким, как в предложенном устройстве уплощенный элемент 3, выполняющий функцию гидродинамического тормоза, находящийся на глубине H, где вертикальная скорость равна
νzH=a⋅σ⋅e-kHsin(σt),
то погруженное тело будет испытывать силу гидродинамического сопротивления, вызванного разностью скоростей:
где C - коэффициент сопротивления;
ρ - плотность воды;
- скорость погруженного тела относительно воды;
ω - площадь поперечного сечения в горизонтальной плоскости.
Эта величина вызвана разностью вертикальных скоростей воды на поверхности νz0(H=0) и на глубине H- νzH
Колебательные движения погруженного тела приводят к затратам энергии, которые обеспечиваются за счет энергии волн. Средняя за период τ мощность, требующаяся для поддержания колебательных движений погруженного тела, равна
Для прямоугольного тела длиной (вдоль распространения волны) и шириной b (вдоль фронта волны) из формулы (6) можно получить выражение
где h=2⋅a - высота волны;
- ускорение свободного падения.
Средняя за период мощность волнения, приходящаяся на фронт шириной b, равна:
Отношение выражения (7) к выражению (8) показывает насколько может быть уменьшена энергия волнения благодаря предложенному устройству:
При получении формулы (9) использована известная связь между периодом и длиной волны:
Формула (9) является приближенной, так как не учитывает ряд особенностей волновых движений жидкости, например, горизонтальных составляющих скоростей жидкости в волне, угловых перемещений плавающего тела и т.п.
Ниже приведен расчет эффективности предложенного устройства на примере оценки снижения мощности 100-летней волны в Черном море.
Исходные данные:
высота волны - h=14 м;
длина волны - λ=230 М;
глубина погруженного тела - Н=0,2λ = 46 м;
длина погруженного тела -
коэффициент сопротивления - С=2.
Вычисления по формуле (9) дают величину η=0,53, т.е. 53% энергии волнения гасится
2. Снижение мощности волны в верхнем потоке за счет имитации уреза воды.
Волна у уреза воды, который создается с помощью устройства на глубокой воде, из класса коротких волн переходит в класс длинных волн. Длинные волны распространяются отлично от коротких. Скорость их зависит не от длины волны, как у коротких волн, а от глубины места: согласно формуле Лагранжа-Эри, она пропорциональна корню квадратному из глубины:
где с - скорость длинных волн,
поэтому, как только волна вышла на глубину меньше половины длины волны, скорость, длина и высота ее уменьшаются. Но, начиная с глубины в 1/5 длины волны, высота волны начинает возрастать, причем особенно быстро с глубины, равной 0,1λ, в этом случае вершина обгоняет подошву и волна обрушается, образуя прибой, который на верхней части предложенного устройства, имитирующей пологую береговую линию, трансформируется в заплеск, энергия волны при этом обнуляется.
название | год | авторы | номер документа |
---|---|---|---|
ВОЛНОВАЯ УСТАНОВКА ДЛЯ ЗАЩИТЫ ПОБЕРЕЖЬЯ ОТ ШТОРМОВ С ОДНОВРЕМЕННЫМ ПРОИЗВОДСТВОМ ЭЛЕКТРОЭНЕРГИИ | 2017 |
|
RU2658630C1 |
Волновая энергетическая установка и ее плавучий рабочий орган | 2017 |
|
RU2665623C1 |
Плавучий волногаситель | 2021 |
|
RU2764922C1 |
УСТРОЙСТВО ДЛЯ ОТБОРА ЭНЕРГИИ МОРСКИХ ВОЛН | 2012 |
|
RU2525986C2 |
ПНЕВМОГИДРАВЛИЧЕСКИЙ ЭНЕРГОНЕЗАВИСИМЫЙ ВОЛНОЛОМ | 2011 |
|
RU2461681C1 |
Устройство для оценки волновых сил, действующих на волновой энергетический конвертер прибрежного волноэнергетического комплекса, и оценки эффективности преобразования энергии волнения в полезную работу | 2018 |
|
RU2689713C1 |
ГИДРОКОМПЛЕКС | 2006 |
|
RU2306385C1 |
ГИБКИЙ ВОЛНОЛОМ | 2014 |
|
RU2564864C1 |
МОБИЛЬНЫЙ ПЛАВУЧИЙ ВОЛНОГАСИТЕЛЬ | 2014 |
|
RU2572563C1 |
ВОЛНОВАЯ ЭЛЕКТРОСТАНЦИЯ | 2008 |
|
RU2365780C1 |
Изобретение относится к области гидротехники, а именно к устройству, предназначенному для защиты побережья от штормов путем обеспечения гашения волн на глубокой воде. Устройство гашения волны на глубокой воде содержит группу установленных по меньшей мере в один ряд элементов 1, обладающих плавучестью. Каждый из указанных элементов состоит из стержня, на одном конце которого закреплен поплавок, а на другом - погружной элемент. Каждый поплавок и погружной элемент имеют в плане прямоугольную форму. Соседние поплавки и погружные элементы соединены между собой с помощью гибких шарниров 5. Технический результат изобретения состоит в создании простого, легкого и надежного приспособления, обеспечивающего гашение волны на глубокой воде с любого направления распространения волн. 1 з.п. ф-лы, 6 ил.
1. Устройство гашения волны на глубокой воде, содержащее группу установленных по меньшей мере в один ряд элементов, обладающих плавучестью, каждый из которых состоит из стержня, на одном конце которого закреплен поплавок, а на другом погружной элемент, причем каждый поплавок и погружной элемент имеют в плане прямоугольную форму, а соседние поплавки и погружные элементы шарнирно соединены между собой.
2. Устройство по п.1, в котором группа элементов, обладающих плавучестью, установлена в несколько рядов, а поплавки и погружные элементы в соседних рядах шарнирно соединены между собой.
Плавучий волнолом | 1941 |
|
SU65580A1 |
US 3846990 A, 12.11.1974 | |||
Способ прогнозирования течения постреанимационного периода, осложненного отеком головного мозга | 1987 |
|
SU1529113A1 |
ПЛАВУЧИЙ ВОЛНОЛОМ | 0 |
|
SU179234A1 |
US 2014178130 A1, 26.06.2014. |
Авторы
Даты
2019-11-12—Публикация
2019-03-12—Подача