Изобретение относится к способам опреснения воды, а именно к области опреснения морской воды.
Известен способ опреснения морской воды [1]. Для того, чтобы довести воду до кипения потребуется нагреть ее до ста градусов Цельсия при давлении в одну атмосферу. Это требует большого количества теплоты, которое потом будет рассеяно в окружающую среду. В конечном итоге это снижает энергоэффективность опреснительной установки.
Цель изобретения - уменьшение температуры кипения морской воды до температуры окружающей среды при создании пониженного атмосферного давления в опреснительной установке с одновременной дезинфекцией воды ультрафиолетовым излучением.
Это достигается тем, что конструкция опреснительной установки представляет собой две герметичные камеры с резервуарами для морской и пресной воды и электрическим воздушным насосом для откачивания воздуха. Кратковременное включение электрического воздушного насоса создает условия, при которых морская вода будет кипеть при температуре окружающей среды без дополнительных энергозатрат на нагрев. Это произойдет за счет более низкого атмосферного давления в опреснительной установке. При этом энергетические затраты на понижение атмосферного давления при помощи электрического воздушного насоса значительно меньше, чем энергетические затраты на нагрев морской воды до ста градусов Цельсия при обычном атмосферном давлении.
На фиг. 1 изображена конструкция опреснительной установки с полупроводниковым термоэлектрическим охлаждающим устройством, реализующая предлагаемый способ.
Работает опреснительная установка следующим образом. Морская вода 16 поступает через водяные электромагнитные клапаны 6 и 13 в резервуары 2 и 5, предназначенные для поочередной работы. По командам компьютера открывается водяной электромагнитный клапан 6, и морская вода заполняет резервуар 2. После закрытия водяного электромагнитного клапана 6 (водяные электромагнитные клапаны 8 и 9 также закрыты) включается электрический воздушный насос 1, и через открытые воздушные электромагнитные клапаны 7 и 11 воздух 18 будет откачан из резервуаров 2 и 3. В этот момент воздушные электромагнитные клапаны 10 и 12 должны быть закрыты. Полупроводниковое термоэлектрическое охлаждающее устройство с ультрафиолетовым излучением 21 позволяет на одних спаях понизить температуру, а на других спаях получить вместо нагрева, в соответствии с эффектом Пельтье, электромагнитное излучение, причем диапазон может достигать ультрафиолетового излучения [2]. Резервуары 2-5 изготавливаются с зеркальными стенками для многократных переотражений фотонов ультрафиолетового излучения. При охлаждении водяной пар будет конденсироваться на боковой поверхности полупроводникового термоэлектрического охлаждающего устройства 21, и по окончании процесса опреснения в резервуаре 2 останется концентрированный раствор морской воды, а в резервуаре 3 накопится пресная вода. Таким образом, при незначительных затратах электроэнергии можно эффективно опреснить морскую воду, одновременно проведя ее очистку ультрафиолетовым излучением. Излучение очистит воду от бактерий лучше, чем кипячение до ста градусов Цельсия.
Для еще большего повышения энергоэффективности опреснительной установки целесообразно перед тем, как начать откачку воздуха, начиная с одной атмосферы, из второй части опреснительной установки, состоящей из резервуаров 4 и 5, можно будет на несколько секунд перекрыть воздушные электромагнитные клапаны 10 и 11, и открыть воздушные электромагнитные клапаны 7 и 12. В результате давление во всех резервуарах 2-5 выровняется и станет равным половине атмосферного давления, что позволит в два раза уменьшить время и энергозатраты на откачку воздуха из резервуаров 4 и 5. После чего, воздушный электромагнитный клапан 12 будет закрыт, и после откачки воздуха в резервуаре 5 начнется кипение морской воды. Завершение процесса в резервуарах 2 и 3 предполагает открытие воздушных электромагнитных клапанов 7 и 10, а также электромагнитного клапана 8 для выпуска концентрированного раствора морской воды 20 из резервуара 2. При открывании водяного электромагнитного клапана 9 из резервуара 3 будет поступать пресная вода 19. При открывании воздушных электромагнитных клапанов 7 и 10, атмосферный воздух 17 поступит в резервуары 2 и 3 и выровняет давление до одной атмосферы для обеспечения беспрепятственного выхода концентрированного раствора морской воды из резервуара 2 и пресной воды из резервуара 3. Аналогично проходит работа в резервуарах 4 и 5, где водяной электромагнитный клапан 15 служит для выпуска концентрированного раствора морской воды 20 из резервуара 5, а водяной электромагнитный клапан 14 выпустит из резервуара 4 пресную воду 19.
Таким образом, способ опреснения морской воды при помощи опреснительной установки с полупроводниковым термоэлектрическим охлаждающим устройством позволяет при незначительных энергетических затратах на понижение давления осуществить получение чистой воды.
Конструкционные материалы опреснительной установки являются экологически безопасными.
Литература
1. Патент РФ №2225843. Термоэлектрический опреснитель / Исмаилов Т.А., Аминов Г.И., Евдулов О.В., Юсуфов Ш.А., Зарат Абделькадер.
2. Патент РФ №2405230. Способ отвода тепла от тепловыделяющих электронных компонентов в виде излучения / Исмаилов Т.А., Гаджиев Х.М., Гаджиева С.М., Нежведилов Т.Д., Челушкина Т.А.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ ПРИ ПОМОЩИ ТОНКОПЛЕНОЧНОГО ПОЛУПРОВОДНИКОВОГО ТЕРМОЭЛЕКТРИЧЕСКОГО ТЕПЛОВОГО НАСОСА ЦИЛИНДРИЧЕСКОЙ ФОРМЫ | 2014 |
|
RU2575650C2 |
СПОСОБ ОПРЕСНЕНИЯ ДЕАЭРИРОВАННОЙ СОЛЕНОЙ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2335459C1 |
Способ опреснения соленой и минерализованной воды и устройство для его осуществления | 2022 |
|
RU2789939C1 |
ОПРЕСНИТЕЛЬНАЯ УСТАНОВКА С ПОЛУЧЕНИЕМ ХОЛОДА И ЭЛЕКТРОЭНЕРГИИ (ВАРИАНТЫ) | 2013 |
|
RU2562660C2 |
Способ опреснения морской воды | 2019 |
|
RU2732929C1 |
УСТРОЙСТВО ДЛЯ ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ | 2005 |
|
RU2309125C2 |
СИСТЕМА ТРУБОПРОВОДОВ | 2006 |
|
RU2470869C2 |
СТАНЦИЯ ВОДОПОДГОТОВКИ ДЛЯ ДИФФЕРЕНЦИРОВАННОГО ВОДОПОТРЕБЛЕНИЯ | 2017 |
|
RU2702595C2 |
УСТРОЙСТВО ДЛЯ ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ | 2005 |
|
RU2296715C2 |
СПОСОБ ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ ПУТЕМ УТИЛИЗАЦИИ НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА | 2008 |
|
RU2359917C1 |
Изобретение может быть использовано в области опреснения морской воды. Способ осуществляют в опреснительной установке с полупроводниковым термоэлектрическим охлаждающим устройством, при этом способ включает доведение морской воды до кипения с последующей конденсацией водяного пара на поверхности охлаждающего устройства и отводом пресной воды. Морскую воду доводят до кипения при температуре окружающей среды посредством искусственного понижения атмосферного давления, при этом используют опреснительную установку, состоящую из двух герметичных камер (2, 3) с резервуарами для морской и пресной воды, выполненными с зеркальными стенками, с созданием пониженного давления в камерах поочередно за счет откачки воздуха (18) насосом (1) через воздушные электромагнитные клапаны (7, 11). Для охлаждения водяного пара используют полупроводниковое термоэлектрическое охлаждающее устройство (21) с ультрафиолетовым излучением. Способ обеспечивает сокращение энергетических затрат и экологическую безопасность работы опреснительной установки, уменьшение температуры кипения морской воды до температуры окружающей среды с одновременной дезинфекцией воды ультрафиолетовым излучением. 1 ил.
Способ опреснения морской воды при помощи опреснительной установки с полупроводниковым термоэлектрическим охлаждающим устройством, включающий доведение морской воды до кипения с последующей конденсацией водяного пара на поверхности охлаждающего устройства и отводом пресной воды, отличающийся тем, что морскую воду доводят до кипения при температуре окружающей среды посредством искусственного понижения атмосферного давления, используют опреснительную установку, состоящую из двух герметичных камер с резервуарами для морской и пресной воды, выполненными с зеркальными стенками, с созданием пониженного давления в камерах поочередно, и используют при этом полупроводниковое термоэлектрическое охлаждающее устройство с ультрафиолетовым излучением.
ТЕРМОЭЛЕКТРИЧЕСКИЙ ОПРЕСНИТЕЛЬ | 2002 |
|
RU2225843C1 |
СПОСОБ ОТВОДА ТЕПЛА ОТ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕКТРОННЫХ КОМПОНЕНТОВ В ВИДЕ ИЗЛУЧЕНИЯ | 2009 |
|
RU2405230C1 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ДИСТИЛЛЯТА | 1994 |
|
RU2060949C1 |
CN 105858766 A, 17.08.2016 | |||
WO 2013181891 A1, 12.12.2013 | |||
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
KR 20130047390 A, 08.05.2013. |
Авторы
Даты
2019-11-13—Публикация
2017-10-17—Подача