Изобретение относится к железнодорожной автоматике и телемеханике, и может быть использовано для контроля состояния сопротивления рельсовых линий, входящих в состав рельсовых цепей синусоидального тока, а также являющихся элементом обратной тяговой сети при электротяге.
Известен способ определения сопротивлений рельсовой линии, согласно которому на входе рельсовой линии в режиме холостого хода измеряют и , а затем в режиме короткого замыкания - и . По измеренным значениям , , и вычисляется сопротивление рельсовой линии. [Дмитренко И.Е., Устинский А.А., Цыганков В.И. Измерения в устройствах автоматики, телемеханики и связи на железнодорожном транспорте. М.: Транспорт, 1982. - 310 с.].
Недостатком данного способа является невозможность его реализации без выключения рельсовой цепи для создания режима холостого хода и короткого замыкания.
Известен также способ определения сопротивления рельсовой нити, согласно которому для контроля состояний рельсовых линий, входящих в состав рельсовых цепей синусоидального тока, в нормальном режиме измеряются действующие значения напряжений и токов и их начальные фазы в начале и в конце рельсовой линии, , , , , и по измеренным значениям вычисляются передаточные функции рельсовой линии по напряжению, току и передаточное сопротивление, а затем, используя вычисленные передаточные функции, вычисляют комплексное сопротивление рельсовой нити длиной 1 км [Патент РФ №2222452, МПК B61L 23/16, Приоритет от 19.11.2001 г., опубликовано 27.01.2004 г. Бюл. №24.].
Недостатком данного способа является невысокая точность измерения сопротивления рельсовой линии, т.к. в формуле определения передаточных функций входят напряжения, токи и их начальные фазы, зависящие не только от величины сопротивления рельсовой линии, но и от проводимости изоляции рельсовых линий, которая существенно искажает величины напряжений, токов и их начальные фазы по концам рельсовой линии, входящие в передаточные функции.
Данный способ выбран авторами в качестве прототипа.
Техническим результатом является повышение точности определения сопротивления рельсовых линий, за счет вычисления сопротивления рельсовых линий уравнением, аргументами которого являются напряжения и токи и их начальные фазы, измеренные по концам рельсовой линии, причем, при формировании уравнения сопротивления рельсовой линии обеспечивается инвариантность к проводимости изоляции рельсовых линий посредством учета всех ее возможных значений.
Технический результат достигается тем, что для контроля состояний рельсовых линий, входящих в состав рельсовых цепей синусоидального тока, в нормальном режиме измеряют действующие значения напряжений и токов и их начальные фазы в начале и в конце рельсовой линии, согласно изобретения, предварительно формируют уравнение сопротивления рельсовой линии, для чего измеряют действующие значения напряжений и токов и их начальные фазы в начале и в конце рельсовой линии при различных значениях сопротивлений рельсовой линии и проводимости изоляции, формируют множество измеренных действующих значений напряжений U1 и U2, тока I1 и , и их начальных фаз ϕ1, ϕ2, ψ1, с помощью которых составляют систему уравнений сопротивления рельсовой линии, правую часть которой приравнивают к значениям сопротивлений рельсовой линии Zрлij, и решая систему уравнений, составленную при всех значениях проводимости изоляции и сопротивления рельсовой линии
где Zрлij - дискретные значения сопротивлений рельсовой линии, при которых измерены действующие значения напряжений и токов и их начальные фазы, находят коэффициенты Cij уравнения сопротивления рельсовой линии, затем, измеряя текущие значения напряжения и тока и их начальные фазы сформированным уравнением, определяют сопротивление рельсовой линии:
Данный способ определения сопротивления рельсовой линии позволяет обеспечить инвариантность результатов вычисления сопротивления к изменению проводимости изоляции рельсовых линий.
В основе способа определения сопротивления рельсовой линии лежит вычисление точного фактического сопротивления рельсовой линии, обеспечивая инвариантность к изменению проводимости изоляции. Для этого, заранее сформированным уравнением циклически вычисляют текущее значение сопротивления рельсовой линии, аргументами которой являются измеренные значения напряжений и токов и их начальные фазы на входе и выходе рельсовой линии зависящие от изменения сопротивления рельсовой линии и проводимости изоляции, величины которых для обеспечения инвариантности учитывают при формировании уравнения сопротивления рельсовой линии.
На фиг. изображена блок-схема алгоритма формирования уравнения и определения сопротивления рельсовых линий.
Способ осуществляется следующим образом.
В нормальном режиме работы рельсовой цепи на входе и выходе рельсовой линии измеряют действующие значения напряжений и токов и их начальные фазы, т.е. , , , . ϕ1, ϕ2, ψ1. Эта информация используется в качестве аргумента уравнения вычисления сопротивления рельсовой линии, с помощью которой вычисляют фактическое сопротивление рельсовой линии (фиг., группа блоков III). В качестве функции комплексных напряжений и токов в уравнении сопротивления рельсовой линии используют полином Колмогорова-Габора. Уравнение вычисления сопротивления рельсовой линии, в части определения коэффициентов Cij, предварительно и однократно определяют следующим образом. Измеряют множество комплексных напряжений, токов по концам рельсовой линии , , , , i=1, 2, …, n, а также соответствующие каждому измеренному значению сопротивления рельсовых линий Zрлi при различных проводимостях изоляции рельсовых линий от минимального g1 до максимального gm значений, (фиг., группа блоков I) и формируют матрицу m{Xij}:
используя которую, составляют систему уравнений сопротивления рельсовой линии
и, решая систему, определяют искомые коэффициенты C0-Сα, которые и формируют искомое уравнение сопротивления рельсовых линий.
(фиг., группа блоков II).
Изложенная методика широко используется при определении многомерных уравнений аппроксимации [Михеев С.Е. Многомерная аппроксимация и интерполяция [Текст]: учебное пособие / С.Е. Михеев; Санкт-Петербургский гос. ун-т. - Санкт-Петербург, 2012. - 60 с.].
Предлагаемый способ определения сопротивления рельсовой линии обеспечивает по сравнению с существующими следующие технико-экономические преимущества:
- обеспечивается точное определение сопротивления рельсовой линии в каждый момент времени;
- высокая точность обеспечивается за счет использования множества информативных признаков (электрических параметров рельсовой линии на ее входе и выходе), зависящих от изменения сопротивления рельсовой линии;
- обеспечивается инвариантность к изменению сопротивления изоляции рельсовых линий за счет учета изменения сопротивления рельсовой линии при формировании уравнения сопротивления рельсовой линии решением системы условных уравнений;
- повышается безопасность движения поездов благодаря своевременному определению изменения сопротивления рельсовой линии, вызванного возможным изломом рельсовой линии;
- появляется возможность создания системы удаленного мониторинга состояний рельсовых линий;
- улучшается культура обслуживания рельсовых цепей благодаря дистанционному обнаружению обрыва стыковых токопроводящих соединителей.
Изобретение относится к железнодорожной автоматике и телемеханике и может быть использовано для контроля состояния сопротивления рельсовых линий, входящих в состав рельсовых цепей синусоидального тока, а также являющихся элементом обратной тяговой сети при электротяге. Сущность заявленного решения заключается в том, что для контроля состояния рельсовых линий, входящих в состав рельсовых цепей синусоидального тока, в нормальном режиме измеряют действующие значения напряжений и токов и их начальные фазы в начале и в конце рельсовой линии, согласно изобретению предварительно формируют уравнение сопротивления рельсовой линии, для чего измеряют действующие значения напряжений и токов и их начальные фазы в начале и в конце рельсовой линии при различных значениях сопротивлений рельсовой линии и проводимости изоляции, формируют множество измеренных действующих значений напряжений U1 и U2, тока I1 и и их начальных фаз ϕ1, ϕ2, ψ1, с помощью которых составляют систему уравнений сопротивления рельсовой линии, правую часть которой приравнивают к значениям сопротивлений рельсовой линии Zрлij, и решая систему уравнений, составленную при всех значениях проводимости изоляции и сопротивления рельсовой линии
где Zрлij - дискретные значения сопротивлений рельсовой линии, при которых измерены действующие значения напряжений и токов и их начальные фазы, находят коэффициенты Cij уравнения сопротивления рельсовой линии, затем, измеряя текущие значения напряжения и тока и их начальные фазы сформированным уравнением, определяют сопротивление рельсовой линии
Техническим результатом является повышение точности определения сопротивления рельсовых линий за счет вычисления сопротивления рельсовых линий уравнением, аргументами которого являются напряжения и токи и их начальные фазы, измеренные по концам рельсовой линии, причем при формировании уравнения сопротивления рельсовой линии обеспечивается инвариантность к проводимости изоляции рельсовых линий посредством учета всех ее возможных значений. 1 ил.
Способ определения сопротивления рельсовой линии, заключающийся в том, что в нормальном режиме измеряются действующие значения напряжений и токов и их начальные фазы в начале и в конце рельсовой линии, отличающийся тем, что предварительно формируют уравнение сопротивления рельсовой линии, для чего измеряют действующие значения напряжений и токов и их начальные фазы в начале и в конце рельсовой линии при различных значениях сопротивлений рельсовой линии и проводимости изоляции, формируют множество измеренных действующих значений напряжений U1 и U2, тока I1 и и их начальных фаз ϕ1, ϕ2, ψ1, с помощью которых составляют систему уравнений сопротивления рельсовой линии, правую часть которой приравнивают к значениям сопротивлений рельсовой линии Zрлij, и решая систему уравнений, составленную при всех значениях проводимости изоляции и сопротивления рельсовой линии
где Zрлij - дискретные значения сопротивлений рельсовой линии, при которых измерены действующие значения напряжений и токов и их начальные фазы,
находят коэффициенты Cij уравнения сопротивления рельсовой линии, затем, измеряя текущие значения напряжения и тока и их начальные фазы сформированным уравнением, определяют сопротивление рельсовой линии
СПОСОБ КОНТРОЛЯ СОСТОЯНИЙ РЕЛЬСОВОЙ ЛИНИИ С ПЕРЕМЫЧКАМИ ПО КОНЦАМ | 2017 |
|
RU2671591C1 |
СПОСОБ КОНТРОЛЯ СВОБОДНОГО СОСТОЯНИЯ РЕЛЬСОВОЙ ЛИНИИ | 2000 |
|
RU2185300C2 |
Статья: "ОПРЕДЕЛЕНИЕ, МЕТОДЫ ИЗМЕРЕНИЯ И КОНТРОЛЯ ПЕРВИЧНЫХ ПАРАМЕТРОВ РЕЛЬСОВОЙ ЛИНИИ", Ж | |||
НАУКА И ТЕХНИКА ТРАНСПОРТА, Номер 4, 2010 г | |||
СПОСОБ ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ РЕЛЬСОВОЙ ЛИНИИ | 2000 |
|
RU2176800C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЙ РЕЛЬСОВОЙ НИТИ И БАЛЛАСТА РЕЛЬСОВОЙ ЛИНИИ | 2001 |
|
RU2222452C2 |
Статья: "ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ РЕЛЬСОВЫХ ЦЕПЕЙ", Ж | |||
Известия Петербургского университета |
Авторы
Даты
2020-01-17—Публикация
2019-04-22—Подача