Многоразовый беспилотный летательный аппарат в транспортно-пусковом контейнере и способ старта многоразового беспилотного летательного аппарата из транспортно-пускового контейнера Российский патент 2020 года по МПК B64C39/02 B64C3/38 B64C3/56 

Описание патента на изобретение RU2714616C1

Группа изобретений относится к авиационной технике, более конкретно к атмосферным беспилотным летательным аппаратам (БПЛА).

Изобретение описывает конструкцию многоразового БПЛА со складывающимся крылом большого удлинения, позволяющее размещать и осуществлять его старт из транспортно-пускового контейнера (ТПК), что позволяет оснастить комплексами с БПЛА морские, авиационные и наземные носители.

В современных условиях и в перспективе к числу основных требований, обеспечивающих успешное выполнение практически любой военной операции, является своевременность, достоверность и точность получения данных разведки и целеуказания. Достаточно успешно данную задачу способны решать БПЛА стратегического назначения с большим радиусом действия и высокой продолжительностью полета (более 20-30 часов).

БПЛА данного класса имеют большой потенциал применения и в гражданской сфере в части обеспечения мониторинга и патрулирования районов, имеющих высокую вероятность возникновения чрезвычайных ситуаций.

Однако широкому развертыванию данных систем препятствует ограниченность по условиям базирования и хранения. Ряд БПЛА имеет внушительные габаритные размеры, сопоставимые с размерами легкого самолета.

Практически все БПЛА большого радиуса действия предполагают аэродромное базирование и ангарное хранение, а в ряде случаев, ежедневное техническое обслуживание. Это серьезно ограничивает и затрудняет широкое применение БПЛА, так как подразумевает наличие обширной аэродромной сети, оборудованной соответствующим образом.

Для широкомасштабного и оперативного использования БПЛА рассматриваемого типа необходима возможность для массового развертывания БПЛА на носителях различных классов (морских, авиационных, наземных). Такими носителями БПЛА прежде всего могут быть надводные корабли, самолеты и мобильные наземные пусковые установки на базе колесных или гусеничных шасси высокой проходимости.

Использование носителей указанных типов может быть реализовано при компактном размещении БПЛА в специализированном пусковом устройстве: пусковой установке или транспортно-пусковом контейнере (ТПК). При этом одним из требований компактного размещения БПЛА в пусковом устройстве является возможность складывания и раскрытия крыла большого удлинения. Выполнение этого условия позволит обеспечить большую дальность и продолжительность полета БПЛА.

Поэтому поиск технических решений, позволяющих компактно разместить БПЛА самолетного типа с крылом большого удлинения в специализированном пусковом устройстве, позволяющем значительно расширить варианты базирования и эксплуатации БПЛА, представляется чрезвычайно актуальным и важным.

Неполной совокупности указанных требований отвечают БПЛА типа RQ-4 Global Hawk, MQ-9 Reaper, MQ-1 Predator (B.C. Фетисов, В.В. Адамовский и др. «Беспилотная авиация: терминология, классификация, современное состояние», Уфа, Photon, 2014, стр. 21, 23, 134). Данные летательные аппараты имеют крыло большого удлинения, имеют большую продолжительность полета (более 20 часов) и поставляются в транспортном контейнере. Однако конструкция данных БПЛА не предполагает старт из транспортно-пускового контейнера с последующим автоматическим раскрытием крыла большого удлинения.

Из уровня техники также известны различные способы складывания и раскрытия консолей крыла БПЛА и размещения его в ТПК.

В патенте №US 2005/02118827 А1 от 29.05.2005 г., МПК В64С 3/38 предложена конструкция БПЛА с монокрылом, размещенного в сложенном положении вдоль нижней поверхности фюзеляжа и раскрываемого с помощью поворотного механизма. Данная схема формирует компактное размещение крыла, но не предусматривает возможность раскрытия крыла большого удлинения. Максимальный размах крыла фактически не превышает продольного габаритного размера летательного аппарата. Это не позволяет повысить такие характеристики летательного аппарата, как дальность, высота и продолжительность полета.

Известна также схема раскрытия консолей крыла БПЛА типа Switchblade (Справочное пособие «Беспилотные летательные аппараты», г. Воронеж, Научная книга, 2015 г., стр. 521-522). БПЛА оснащен электродвигателем, аккумуляторной батареей и полезной нагрузкой.

Запуск БПЛА осуществляется из переносной пусковой трубы по типу миномета. После пуска из трубы БПЛА автоматически раскрывает свое оперение и консоли крыла по принципу «перочинный нож». Посадку БПЛА Switchblade осуществляет «на брюхо» методом продольного скольжения.

Однако приведенная схема также не предусматривает раскрытия крыла большого удлинения. Длина раскрытой консоли крыла при таком способе раскрытия также не превышает продольного габаритного размера БПЛА.

Известно техническое решение по размещению БПЛА разведки и целеуказания типа KZO разработки немецкого концерна STN Atlas (Справочное пособие «Беспилотные летательные аппараты», г. Воронеж, Научная книга, 2015 г., стр. 182-185).

БПЛА является монопланом с низким расположением крыла. Корпус БПЛА изготовлен из композиционных материалов. Двигатель БПЛА поршневой двухцилиндровый с толкающим двухлопастным винтом. Консоли крыла прямые, малого удлинения с двумя поперечными осями складывания. Радиус действия данного БПЛА 100 км, продолжительность полета - 3.5 часа.

Система старта, транспортирования и хранения БПЛА - контейнерная. Контейнер размещается на колесном автомобильном шасси. Старт БПЛА KZO осуществляется из наклонной контейнерной пусковой установки с помощью стартового ракетного двигателя (РД). Схема запуска стартового РД - проточная, т.е. открыты передняя и задняя крышки контейнерной пусковой установки.

При этом раскрытие консолей крыла БПЛА KZO из сложенного транспортировочного положения в полетную конфигурацию осуществляется внутри контейнерной пусковой установки до запуска стартового ракетного двигателя.

После выхода БПЛА KZO из контейнера и запуска основной двигательной установки стартовый ракетный двигатель отделяется и БПЛА осуществляет полет по программной траектории (https://ru.wikipedia.org/wiki/KZO).

Данное решение по технической сущности наиболее близко к предлагаемому изобретению и взято в качестве прототипа.

Однако технические решения в части конструкции БПЛА и способа старта БПЛА из ТПК, реализованные в прототипе, сопряжены со следующими трудностями и недостатками:

1. Показанные конструкции и способы раскрытия крыла не позволяют разместить БПЛА с крылом большого удлинения в малогабаритном ТПК. БПЛА прототип занимает контейнер, габариты которого: длина - 3.05 м, ширина - 2.44 м, высота - 2.44 м. Это делает невозможным размещение не только на авиационном носителе, но делает проблематичным его базирование и на морском носителе из-за значительных габаритных размеров и способу старта в связи с проточной схемой запуска стартового РД.

Применение БПЛА KZO с мобильной пусковой установки (автомобильного шасси) также сопряжено со значительными трудностями и высокими требованиями к стартовой позиции. Так для реализации способа старта БПЛА KZO требуется стартовая наземная площадка размером около 100×100 м. Это накладывает значительные ограничения на возможности оперативного выбора стартовой позиции. При этом формирование полетной конфигурации (раскрытие крыла) осуществляется на стартовой позиции внутри контейнерной пусковой установки с помощью обслуживающего персонала. В связи с этим время подготовки БПЛА к старту доходит до 30 минут, что значительно снижает оперативность применения БПЛА и в ряде специфических операций делает его практически бесполезным.

2. Предлагаемые технические решения не предусматривают унифицированного размещения БПЛА на любых других типах носителей (морских, авиационных и наземных);

3. Представленные схемы компоновки БПЛА в ТПК не предусматривают оснащение БПЛА взлетно-посадочным посадочным шасси (т.е. по сути практически все БПЛА, размещенные в ТПК, являются многоразовыми, но с коротким ресурсом эксплуатации).

Технической задачей предлагаемого решения является исключение указанных недостатков и создание возможности размещения БПЛА в ТПК и старта из него, реализация которой обеспечивала:

- размещение БПЛА со сложенным крылом большого удлинения, взлетно-посадочным шасси и оперением в малогабаритном ТПК;

- раскрытие крыла большого удлинения после выхода БПЛА из малогабаритного ТПК;

- возможность унифицированного размещения от 1-ого и более БПЛА на основных типах носителей - морском, авиационном, наземном;

- многоразовость применения БПЛА.

Техническим результатом является возможность:

- компактного размещения БПЛА в ТПК на типовом морском, авиационном и наземном носителях;

- многоразового старта и применения БПЛА из ТПК;

- увеличения дальности, высоты и продолжительности полета БПЛА.

Это радикально расширит возможности применения БПЛА при проведении поисковых, разведывательных и спасательных операций, длительному мониторингу и патрулированию районов с высоким риском возникновения чрезвычайных ситуаций.

Технический результат осуществляется за счет того, что:

- многоразовый беспилотный летательный аппарат (БПЛА) в транспортно-пусковом контейнере, содержащий фюзеляж, двигательную установку, стартово-разгонную ступень, складывающиеся крыло и оперение, отличающийся тем, что каждая из консолей крыла выполнена из двух или более телескопически связанных между собой частей, установленных с возможностью раскрытия при помощи одного и более лонжеронов, каждый из которых выполнен из телескопически соединенных частей, при этом корневая часть лонжерона жестко закреплена в корневой части консоли крыла, а в концевой части консоли крыла выполнен жестко закрепленный силовой шпангоут, в которой упирается лонжерон после раздвижения, внешние торцы корневой и концевой частей лонжерона выполнены глухими, при этом БПЛА оснащен складывающимися взлетно-посадочным шасси. В качестве двигательной установки может быть использована турбореактивная, винтомоторная, электрическая винтомоторная двигательная установка. При этом многоразовый БПЛА может быть оснащен системой автоматической дозаправки топливом в полете и/или системой автоматической подзарядки электроэнергией в полете.

- Способ старта многоразового беспилотного летательного аппарата из транспортно-пускового контейнера, включающий запуск стартово-разгонной ступени, движение беспилотного летательного аппарата в транспортно-пусковом контейнере и за его пределами, отличающийся тем, что после полного выхода беспилотного летательного аппарата из транспортно-пускового контейнера производят раскрытие и фиксацию в полетном положении оперения и корневых частей консолей крыла БПЛА, с последующим выдвижением концевых консолей крыла при помощи телескопически выдвигаемых лонжеронов и фиксацией в конечном положении, после чего отделяют стартово-разгонную ступень и запускают двигательную установку БПЛА.

При этом большая дальность и высота полета в сочетании с высокой продолжительностью полета обеспечивается оснащением БПЛА крылом большого удлинения. Крыло большого удлинения имеет повышенное аэродинамическое качество, определяющее высокую экономичность, продолжительность, дальность и высоту полета БПЛА (Г.И. Житомирский «Конструкция самолетов», г. Москва, Машиностроение, 1995 г. стр. 56-57 г.).

Задача размещения БПЛА с крылом большого удлинения в ТПК решается тем, что каждая из консолей крыла делится на две или более кинематических части, состыкованных между собой телескопическим подвижным соединением с помощью телескопического лонжерона.

На Фигуре 1 представлена схема компактного размещения БПЛА в ТПК и эксплуатационные конфигурации БПЛА.

На Фигуре 2 представлена схема раскрытия телескопического крыла с помощью телескопического лонжерона.

На Фигуре 3 представлена схема раскрытия оперения и консолей крыла большого удлинения БПЛА после старта из ТПК.

На Фигуре 4 представлены варианты размещения БПЛА на носителях.

На Фигуре 5 представлены варианты применения БПЛА с различных носителей.

Приняты следующие обозначения:

1. БПЛА;

2. ТПК;

3. Крышка ТПК;

4. Стартово-разгонная ступень (СРС);

5. Двигательная установка;

6. Оперение БПЛА;

7. Крыло БПЛА;

8. Корневая часть консоли крыла;

9. Концевая часть консоли крыла;

10. Телескопический лонжерон консоли крыла;

11. Блок сенсоров и датчиков обнаружения БПЛА;

12. Передняя стойка взлетно-посадочного шасси БПЛА;

13. Задние стойки взлетно-посадочного шасси БПЛА;

14. Фюзеляж БПЛА;

15. Надводный корабль носитель БПЛА;

16. Авиационный носитель БПЛА;

17. Мобильная пусковая установка носитель БПЛА;

18. Выход БПЛА;

19. Раскрытие оперения и корневых частей консолей крыла БПЛА;

20. Выдвижение концевых частей консолей крыла БПЛА;

21. Программная траектория полета БПЛА;

22. Зона поиска и обнаружения БПЛА;

23. Объект поиска и спасения;

24. Надводный корабль спасательной службы;

25. Космический аппарат;

26. Передача данных об обнаруженном объекте на носитель;

27. Передача данных на спасательное судно;

28. Передача данных на КА;

29. Разворот БПЛА на ближайший аэродром;

30. Посадка БПЛА на ближайший аэродром;

31. Аэродром посадки БПЛА.

В исходном положении для транспортировки, хранения и эксплуатации БПЛА (1) со сложенными оперением (6) и крылом (7) размещен в ТПК (2) (фрагмент (а), фигура 1).

В носовой части фюзеляжа (14) БПЛА расположен блок сенсоров и датчиков обнаружения (11), в хвостовой части БПЛА расположена двигательная установка (5) (фрагмент (а), фигура 1). К хвостовой части фюзеляжа (14) тандемно пристыкована СРС (4) (фрагмент (б), фигура 1).

Для осуществления посадки на аэродром БПЛА имеет убирающиеся внутрь фюзеляжа (14) переднюю (12) и задние (13) стойки шасси (фрагмент (г), фигура 1).

Оперение (6) БПЛА выполнено по «V»-образной схеме, с возможностью складывания вдоль верхней поверхности фюзеляжа (14) (фрагменты (б), фигура 1).

Для обеспечения высоких летно-технических характеристик БПЛА (1) крыло (7) имеет большое удлинение, каждая из консолей которого состоит из двух телескопически связанных между собой частей: корневой (8) и концевой (9) (фрагмент (г), фигура 1). Концевые части (9) консолей крыла (7) содержат замковые механизмы с возможностью фиксации в конечном положении (фрагмент (б), фигура 2).

Для обеспечения выдвижения концевой части крыла из корневой в конструкции крыла предусмотрен телескопический лонжерон, выполненный из двух или более кинематических частей, герметично состыкованных между собой подвижным телескопическим соединением наподобие складной зрительной трубы (телескопа). Корневая часть лонжерона жестко закреплена в корневой части консоли крыла, а в концевой части консоли крыла выполнен зацело силовой шпангоут, в которой упирается лонжерон после раз движения.

Внешние торцы корневой и концевой частей телескопического лонжерона выполнены глухими для обеспечения работоспособности и герметичности.

Кинематические части лонжерона могут представлять собой прямые цилиндрические оболочки, либо прямые призматические оболочки. Конструкция телескопического лонжерона выполнена подвижной и полой с возможностью изменения внутреннего объема.

Корневые части консолей крыла (8) выполнены складывающимися по принципу «перочинный нож» в подфюзеляжное или в надфюзеляжное или в внутрифюзеляжное пространство БПЛА (1) и снабжены механизмами (например, на основе пружин, пневмо- или гидприводов), служащими для их раскрытия и последующей фиксации в полетном положении (фрагменты (б) и (в), фигура 3). Концевая часть консоли крыла (9) и телескопический лонжерон (10) в сложенном положении размещаются в корневой части консоли крыла (8) (фрагмент (а), фигура 2).

Рассмотрим способ старта предложенного БПЛА (1) из ТПК (2).

Осуществляется открытие передней крышки (3) ТПК (2). Выстреливание БПЛА (1) из ТПК (2) осуществляется посредством специального газогенератора или путем запуска двигателя СРС (4), например, работающего в режиме «затянутого» выхода на полную тягу. После того, как давление в донном объеме ТПК (2) достигнет заданного уровня БПЛА (1), скользя на опорных накладках по направляющей цилиндрической поверхности ТПК (2), начинает прямолинейное ускоренное движение. Носовая часть БПЛА отходит от переднего торца ТПК (2), а затем передняя часть фюзеляжа (14) выходит из ТПК (2).

После полного выхода (отсутствие частей БПЛА в контейнере) БПЛА (1) из ТПК (2) с помощью гидро- или пневмо- приводов раскрываются и фиксируются пружинными механизмами в полетном положении корневые части консолей крыла (8) и оперения (6) (фрагменты (б) и (в), фигура 3).

После раскрытия корневых частей (8) консолей крыла (7) в полетное положение они фиксируются в нем с помощью пружинных замковых механизмов.

После фиксации корневых консолей (8) крыла (7) БПЛА (1) в полетном положении начинается телескопическое выдвижение концевых частей (9) из корневых частей (8) каждой из двух консолей крыла с помощью телескопического лонжерона (фрагмент (в), фигура 3).

Для обеспечения телескопического выдвижения концевых частей (9) во внутреннее пространство телескопического лонжерона (10) каждой из консолей крыла (7) одновременно по трассам высокого давления подается рабочее тело (жидкость или газ) (фрагмент (б), фигура 2).

В результате концевые части (9) консолей крыла (7) выдвигаются в конечное полетное положение с последующей фиксацией с помощью замковых механизмов.

СРС (4) разгоняет БПЛА (1) до заданной скорости и по завершении работы отделяется от хвостовой части БПЛА под действием пиротолкателей и набегающего потока. После отделения СРС (4) формируется полетная конфигурация БПЛА (1) (фрагмент (в), фигура 1), осуществляются операции по запуску двигательной установки (5) и начинается полет БПЛА (1) в маршевом режиме по программной траектории.

Увеличивая или уменьшая давление рабочего тела (газа или жидкости) внутри телескопического лонжерона можно увеличивать или уменьшать продольный размер лонжерона, осуществляя тем самым раскрытие или складывание телескопических частей консоли крыла БПЛА.

Такая конструкция консолей крыла большого удлинения позволяет последовательно, начиная от корневой и заканчивая концевой частями, раскрыть, а после выполнения посадки компактно сложить консоли крыла большого удлинения в исходное положение (например, в подфюзеляжное, либо надфюзеляжное, либо во внутрифюзеляжное пространства БПЛА).

Складывание оперения БПЛА производится стандартно вдоль продольной оси БПЛА на внешнюю поверхность фюзеляжа БПЛА.

Благодаря этому достигается заявленный технический результат: размещение БПЛА с крылом большого удлинения в ТПК.

Предлагаемое техническое решение позволяет разместить БПЛА (1), например, на надводном корабле (фрагмент (а), фигура 4), транспортном самолете (фрагмент (б), фигура 4), мобильной пусковой установке (фрагмент (в), фигура 4) в количестве не менее двух единиц.

Рассмотрим вариант применения рассматриваемого БПЛА (1) с одного из типовых носителей: надводного корабля (15), авиационного носителя (16) и мобильной наземной пусковой установки (17) (фигура 5).

Выход БПЛА (1) из ТПК (2) осуществляется путем запуска двигателя СРС (4). После запуска двигателя СРС (4) БПЛА начинает прямолинейное ускоренное движение по внутренним направляющим ТПК (2).

После выхода (18) БПЛА (1) из ТПК (2) раскрываются и фиксируются в полетном положении (19) корневые части консоли крыла (8) и оперения (6) БПЛА. После фиксации корневых консолей (8) крыла (7) БПЛА (1) в полетном положении начинается выдвижение (20) концевых частей (9) консолей крыла (7).

После завершения формирования полетной конфигурации БПЛА (1) СРС (4) разгоняет БПЛА (1) до заданной скорости и по завершении работы отделяется от БПЛА (1) под действием пиротолкателей и набегающего воздушного потока. После отделения СРС (4) осуществляется формирование полетной конфигурации БПЛА (1), и запуск двигательной установки (6). После осуществления операций по его запуску БПЛА (1) начинает полет в маршевом режиме по программной траектории (21).

После запуска двигательной установки (5) и начала маршевого полета по программной траектории (21) включается блок сенсоров и датчиков обнаружения (11) и формируется зона поиска и обнаружения (22).

При попадании объекта поиска (23) в зону поиска и обнаружения (22) бортовой комплекс связи БПЛА осуществляет:

- передачу данных (26) об обнаруженном объекте поиска на соответствующий носитель БПЛА;

- передачу данных (27) об обнаруженном объекте поиска на надводный корабль спасательной службы (24);

- передачу данных (28) об обнаруженном объекте поиска на КА (25) мониторинговой орбитальной группировки.

После завершения процесса передачи данных об обнаруженном объекте поиска (23) БПЛА (1) выполняет программный разворот (29) и полет к ближайшему аэродрому (31), где осуществляет посадку (30) посредством предусмотренных выпускаемых передней стойки (12) и задних стоек (13) взлетно-посадочного шасси.

На аэродроме (31) после прохождения технического осмотра, устранения неисправностей и проведения регламентных работ БПЛА (1) может быть размещен в подготовленном ТПК (2) и готов к повторному применению.

Подводя итог, можно заключить, что оснащение БПЛА телескопическим складывающимися крылом большого удлинения с телескопическим многозвенным лонжероном, оперением, взлетно-посадочным шасси позволяет разместить БПЛА в малогабаритном ТПК с минимальными ограничениями по базированию на любых типовых авиационных, морских и наземных носителях.

Это открывает широкие возможности по оперативному использованию многоразового БПЛА стратегического назначения с любых типовых носителей в целях получения данных целеуказания, проведения разведки, мониторинга и патрулирования.

Похожие патенты RU2714616C1

название год авторы номер документа
МНОГОФУНКЦИОНАЛЬНЫЙ МАЛОГАБАРИТНЫЙ ТРАНСФОРМИРУЕМЫЙ МНОГОРАЗОВЫЙ БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ И СПОСОБЫ СТАРТА 2022
  • Евдокимов Сергей Викторович
  • Бадеха Александр Иванович
  • Маталасов Сергей Юрьевич
  • Куминов Сергей Александрович
  • Жестков Юрий Николаевич
  • Анфимов Михаил Николаевич
  • Крупин Сергей Андреевич
  • Иовлев Михаил Андреевич
RU2778177C1
Стартовое устройство 2021
  • Сысоев Сергей Николаевич
  • Черкасов Юрий Владимирович
  • Федин Александр Викторович
  • Федина Мария Александровна
RU2771300C1
Стартовое устройство 2022
  • Сысоев Сергей Николаевич
RU2787533C1
УДАРНЫЙ АВИАЦИОННЫЙ КОМПЛЕКС С БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 2022
  • Дуров Дмитрий Сергеевич
RU2810821C1
МНОГОЦЕЛЕВАЯ БЕСПИЛОТНАЯ АВИАЦИОННАЯ РАКЕТНАЯ СИСТЕМА 2022
  • Дуров Дмитрий Сергеевич
RU2791754C1
Стартовое устройство 2022
  • Сысоев Сергей Николаевич
  • Кирилин Денис Николаевич
RU2801754C1
КРЫЛАТАЯ РАКЕТА В ТРАНСПОРТНО-ПУСКОВОМ КОНТЕЙНЕРЕ 2001
  • Артамасов О.Я.
  • Белюстин Л.В.
  • Ефремов Г.А.
  • Леонов А.Г.
  • Мельников В.Ю.
  • Хомяков М.А.
  • Царев В.П.
RU2215981C2
БЕРЕГОВОЙ КОМПЛЕКС АВИАЦИОННО-РАКЕТНЫЙ МНОГОРАЗОВЫЙ АВТОНОМНЫЙ 2021
  • Дуров Дмитрий Сергеевич
RU2768999C1
Беспилотный летательный аппарат - перехватчик 2018
  • Брусов Владимир Сергеевич
  • Волковой Александр Васильевич
  • Друзин Сергей Валентинович
  • Росляков Игорь Алексеевич
  • Созинов Павел Алексеевич
  • Трифонов Игорь Витальевич
RU2669904C1
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2005
  • Зубарев Александр Николаевич
  • Икрянников Евгений Демьянович
  • Петров Евгений Геннадиевич
  • Подобедов Владимир Александрович
RU2288140C1

Иллюстрации к изобретению RU 2 714 616 C1

Реферат патента 2020 года Многоразовый беспилотный летательный аппарат в транспортно-пусковом контейнере и способ старта многоразового беспилотного летательного аппарата из транспортно-пускового контейнера

Группа изобретений относится к атмосферным беспилотным летательным аппаратам (БПЛА). Многоразовый БПЛА в транспортно-пусковом контейнере содержит фюзеляж, двигательную установку, стартово-разгонную ступень, складывающиеся крыло и оперение. Каждая из консолей крыла выполнена из телескопически связанных между собой частей, установленных с возможностью раскрытия при помощи лонжеронов, каждый из которых выполнен из телескопически соединенных частей. Корневая часть лонжерона жестко закреплена в корневой части консоли крыла, а в концевой части консоли крыла выполнен жестко закрепленный силовой шпангоут, в которой упирается лонжерон после раздвижения. Внешние торцы корневой и концевой частей лонжерона выполнены глухими. БПЛА оснащен складывающимися взлетно-посадочным шасси. Способ старта многоразового БПЛА из транспортно-пускового контейнера включает запуск стартово-разгонной ступени, движение БПЛА в транспортно-пусковом контейнере и за его пределами. После производят раскрытие и фиксацию в полетном положении оперения и корневых частей консолей крыла БПЛА, с последующим выдвижением концевых консолей крыла при помощи телескопически выдвигаемых лонжеронов и фиксацией в конечном положении. Далее отделяют стартово-разгонную ступень и запускают двигательную установку БПЛА. Группа изобретений направлена на увеличение дальности, высоты и продолжительности полета. 2 н. и 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 714 616 C1

1. Многоразовый беспилотный летательный аппарат (БПЛА) в транспортно-пусковом контейнере, содержащий фюзеляж, двигательную установку, стартово-разгонную ступень, складывающиеся крыло и оперение, отличающийся тем, что каждая из консолей крыла выполнена из двух или более телескопически связанных между собой частей, установленных с возможностью раскрытия при помощи одного и более лонжеронов, каждый из которых выполнен из телескопически соединенных частей, при этом корневая часть лонжерона жестко закреплена в корневой части консоли крыла, а в концевой части консоли крыла выполнен жестко закрепленный силовой шпангоут, в который упирается лонжерон после раздвижения, внешние торцы корневой и концевой частей лонжерона выполнены глухими, при этом БПЛА оснащен складывающимися взлетно-посадочными шасси.

2. Многоразовый беспилотный летательный аппарат по п. 1 отличающийся тем, что оснащен системой автоматической дозаправки топливом в полете.

3. Многоразовый беспилотный летательный аппарат по п. 1 отличающийся тем, что оснащен системой автоматической подзарядки электроэнергией в полете.

4. Способ старта многоразового беспилотного летательного аппарата из транспортно-пускового контейнера, включающий запуск стартово-разгонной ступени, движение беспилотного летательного аппарата в транспортно-пусковом контейнере и за его пределами, отличающийся тем, что после полного выхода беспилотного летательного аппарата из транспортно-пускового контейнера производят раскрытие и фиксацию в полетном положении оперения и корневых частей консолей крыла БПЛА, с последующим выдвижением концевых консолей крыла при помощи телескопически выдвигаемых лонжеронов и фиксацией в конечном положении, после чего отделяют стартово-разгонную ступень и запускают двигательную установку БПЛА.

Документы, цитированные в отчете о поиске Патент 2020 года RU2714616C1

US 0005118052 A1, 02.06.1992
US 0004410151 A1, 18.10.1983
СПОСОБ ИНТЕНСИФИКАЦИИ ТЕПЛООТДАЧИ 0
SU184881A1

RU 2 714 616 C1

Авторы

Леонов Александр Георгиевич

Зимин Сергей Николаевич

Измалкин Олег Сергеевич

Асатуров Сергей Михайели

Даты

2020-02-19Публикация

2019-05-08Подача