Способ формирования короткоимпульсных сверхширокополосных сигналов Российский патент 2020 года по МПК H03K5/00 

Описание патента на изобретение RU2715007C1

Изобретение относится к области формирования короткоимпульсных сверхширокополосных сигналов и может быть использовано при разработке систем радиосвязи, радиолокации и радионавигации, использующих сложные сигналы для обеспечения повышенной помехозащищённости и энергетической скрытности функционирования.

Практически любой способ формирования сигналов базируется на используемом при этом виде модуляции, так как именно она определяет функциональные качества сигнала и простоту реализации обработки последовательности импульсов сверхширокополосного (СШП) сигнала. Основные виды модуляции и описание их особенностей представлено в [1]. В настоящее время в большинстве приложений чаще всего используется способ позиционно-импульсной модуляции (ППМ, в латинском варианте РРМ – Pulse-Position Modulation), например, [2, 3]. В этом случае поток опорных импульсов следует на равных расстояниях друг от друга на временной оси, а логический нуль или логическая единица располагаются слева или справа от опорного импульса на выбранных расстояниях.

Достаточно распространён также способ модуляция полярности импульсов (МПИ) [3, 4] и его совмещение с ППМ (ППМ-МПИ) [3]. К недостаткам ППМ и ППМ-МПИ так, как они использованы в [3] можно отнести высокие требования к синхронизации системы и к стабильности опорного импульсного генератора [1].

В [4] использование ППМ совмещено с изменением скорости нарастания (убывания) паузы между импульсами СШП сигналов различной полярности, что приводит к улучшению корреляционных характеристик импульсных СШП сигналов. Однако, формирование больших ансамблей таких сигналов с хорошими взаимокорреляционными свойствами достаточно проблематично.

В [5] сверхширокополосные сигналы формируются кодовыми последовательностями одинаковой длины, содержащими по десять логических единиц, отстоящих друг от друга на разное число отсчётов. Кодовые последовательности, модулирующие информационные нули и информационные единицы одинаковы по содержанию, но отличаются периодом расстановки импульсов. К недостаткам такого способа можно отнести то, что различение информационных символов по длительности СШП сигналов (или по значению скважности) приведёт к более жёстким требованиям к точности синхронизации. Также этот способ не представляет возможности формировать большие ансамбли слабокоррелированных сигналов.

Наиболее близким по технической сущности к предлагаемому является способ амплитудно-кодовой модуляции (АКМ), представленный в [6].

Суть его состоит в том, что для увеличения базы сигнала (или выигрыша обработки) в n раз, с целью обеспечения помехоустойчивости и многопользовательского режима в одном и том же частотном диапазоне при кодировании информационного символа, используется пачка из n сверхкоротких импульсов (СКИ), положение которых на временной оси относительно начального момента задаётся в соответствии с кодовой расширяющей последовательностью (бинарной псевдослучайной последовательностью (ПСП). При этом после выбора ПСП осуществляется её модификация (трансформация в последовательность псевдослучайных чисел – ППЧ). Произвольная ПСП состоит из последовательности положительных и отрицательных единичных символов ai = {1, -1}. Тогда модифицированная ПСП (ППЧ) будет формироваться следующим образом:

- осуществляется операция:

(1)

то есть получили ПСП b = {1, 0};

- ПСП (1) заменяется потоком численных значений позиций единиц в (1), которые будут представлять собой ППЧ;

- при формировании СШП сигнала позиция ненулевого импульса на временной оси в такой пачке определяется численным значением текущего элемента в модифицированной ПСП (ППЧ), а его длительность определяется величиной заданной задержки τ0.

Следовательно, модифицированной ПСП будет соответствовать пачка монополярных видеоимпульсов с паузами псевдослучайной длительности между ними.

Например, модифицированная ПСП (ППЧ), соответствующая 13-ти элементному коду Баркера 11111-1-111-11-11 будет иметь вид: 0, 1, 2, 3, 4, 7, 8, 10, 12.

Видов ПСП существует очень много. Все они обладают своими характеристиками, поэтому выбор какой-либо ПСП (ансамбля ПСП) будет определяться задачами, которые должно решать соответствующее радиоэлектронное средство или система (РЭС). Полный код согласно [7] содержит L=2n всевозможных кодовых комбинаций (ПСП) длины n. В то же время количество ПСП, используемых для формирования квазиортогональных сложных сигналов (ансамбль слабокоррелированных форм), гораздо меньше. Так число М-последовательностей определяется следующим образом [7]:

K=φ(n)/k,

где φ(n) – функция Эйлера, равная количеству чисел в ряду 1, 2, …, n-1 взаимно простых с числом n=2k-1;

k – число разрядов в сдвигающем регистре автомата формирования М-последовательностей.

Ниже в таблице для нескольких значений k представлены характерные численные соотношения между величинами L, n и K.

Таблица

k n L φ(n) K 3 7 128 φ(n)=n1=6 2 4 15=3·5 3,3·104 n-1=14; 1,2,3,4,5,6,7,8,9,10,11,12,13,14 (φ(n)=8) 2 5 31 2,15·109 φ(N)=N-1=30 6 6 63=3·3·7 9,2·1018 n-1=62; 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,
40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,
59,60,61,62 (φ(n)=36)
6
7 127 1,7·1038 φ(n)=n-1=126 18

Жирным курсивом в рядах 1, 2, …, n-1 выделены числа взаимно простые с числом n.

На фиг. 1 и фиг. 2 в качестве примера приведены результаты использования способа-прототипа, когда в качестве ПСП выбран ансамбль 15-ти элементных М-последовательностей. Здесь на фиг. 1а) и фиг. 2а) в качестве примера аппаратной реализации представлены два автомата формирования ансамбля выбранных ПСП на регистрах сдвига с памятью со структурой связей, соответствующей коэффициентам своих характеристических многочленов, представленным на этих фигурах в двоичной форме (11001 и 10011). На фиг. 1б) и фиг. 2б) – результат функционирования либо цифровых автоматов, либо программных блоков, описанных выше. Фиг. 1в) и фиг. 2в) представляют сформированный в соответствии со сгенерированными М-последовательностями поток биполярных видеоимпульсов, фиг. 1г) и фиг. 2г) – поток монополярных импульсов, сформированный в соответствии с модифицированными М-последовательностями. Потоки импульсов, показанных на фиг. 1г) и фиг. 2г), можно после усиления использовать в качестве СШП сигналов, а можно их использовать в качестве временных окон, внутри которых будут формироваться импульсы заданной формы, что и отображено на фиг. 1д) и фиг. 2д).

Из анализа приведённой выше таблицы следует, что объём ансамблей слабокоррелированных сигналов растёт значительно медленнее, чем объём ПСП, поэтому даже очень длинные ПСП характеризуются не очень большими объёмами ансамблей. Так для n = 15 ансамбль СШП сигналов для способа-прототипа составит К = 2, а база сигналов из этого ансамбля В = n.

Таким образом, во-первых, к недостаткам способа-прототипа можно отнести приведённый выше факт, следующий из анализа таблицы. Во-вторых, при использовании этого способа с ростом объёма ПСП база сигнала также будет расти недостаточно быстро, следовательно, и взаимокорреляционные свойства сигналов внутри ансамбля улучшаются медленно. В-третьих, наличие групп рядом или близко расположенных импульсов будут подвержены межсимвольной интерференции, а также на приёмной стороне на обработку СШП сигналов с такой структурой будет отрицательно влиять многолучевое распространение при работе РЭС на местности, характеризующейся высокими препятствиями (город, горы, лесная местность и т.п.).

Задачей предлагаемого способа является реализация возможности организации достаточно больших ансамблей слабокоррелированных СШП сигналов, характеризующихся большой величиной и управляемостью выигрыша обработки (базы) при небольших объёмах, используемых при их формировании ПСП.

Для решения поставленной задачи в способе формирования короткоимпульсных сверхширокополосных сигналов, включающем формирование биполярной бинарной псевдослучайной последовательности длины n a = {1,-1} и замещение её отрицательных элементов нулями b = {1,0}, согласно изобретению, генерируют матрицу α0 размерами m x m (m ≥ n), строками которой являются квазиортогональные последовательности псевдослучайных чисел и выделяют подматрицу α размерами n x n, в которой выбирают произвольную х-ю строку α(х, i) и построчно генерируют матрицу β0, в k-й строке которой на позиции с координатами {k, α(х, k)} будет находиться элемент ПСП bk, конкатенацией столбцов матрицы β (транспонированной матрицы ) получают «разреженный» код R, импульсами заданной формы длительностью τ0 замещают позиции ненулевых элементов этого кода, а позиции нулевых элементов этого кода замещают временными задержками такой же длительности τ0.

Предлагаемый способ формирования короткоимпульсных СШП сигналов заключается в следующем.

Используется пачка из n сверхкоротких импульсов (СКИ), положение которых на временной оси относительно начального момента задаётся в соответствии с кодовой расширяющей последовательностью (бинарной псевдослучайной последовательностью (ПСП). При этом после выбора ПСП осуществляется её модификация (трансформация в последовательность псевдослучайных чисел – ППЧ). Произвольная ПСП состоит из последовательности положительных и отрицательных единичных символов ai = {1, -1}. Тогда модифицированная ПСП (ППЧ) будет формироваться следующим образом:

- осуществляется операция:

(1)

то есть получили ПСП b = {1, 0};

- ПСП заменяется потоком численных значений позиций единиц, которые будут представлять собой ППЧ;

- при формировании СШП сигнала позиция ненулевого импульса на временной оси в такой пачке определяется численным значением текущего элемента в модифицированной ПСП (ППЧ), а его длительность определяется величиной заданной задержки τ0.

Далее генерируются (например, на основе степенных сравнений по модулю простого числа) матрицы, строками и столбцами которых являются последовательности псевдослучайных чисел (ППЧ), длина которых определяется величинами коэффициентов, участвующих в организации правил образования таких матриц согласно соотношению:

(2)

Здесь: Р – простое число; с0 – соответствующий коэффициент; j =0, 1…, P-2; ν =0,1,…, P-2 – ограничения коэффициентов алгоритма; а – первообразный корень по модулю P; trunc(*) – возвращает целую часть числа. На фиг. 3а) представлена матрица α0 размером P-2 х P-2 для Р = 17, с0 = 2, а = 3.

Затем выделяется подматрицa α размером n x n (пусть n = 15) произвольно, например, в пределах строк и столбцов с номерами i = 0…n-1, которая показана на фиг. 3б). Далее выбирается строка матрицы α, на основе которой будет формироваться «разреженный» СШП сигнал (например, третья α(2, i)) и построчно генерируется матрица β0 следующим образом:

1. Значимым элементом (в том числе и с нулевым значением) нулевой строки этой матрицы будет b0 на позиции c координатами {0, α(2,0)}, то есть элемент матрицы β0 β0[0, α(2,0)] = b0, а остальные её элементы будут иметь нулевые значения.

2. Значимым элементом первой строки этой матрицы будет b1 на позиции c координатами {1, α(2,1)}, то есть элемент матрицы β0 β0[1, α(2,1)] = b1, а остальные её элементы будут иметь нулевые значения.

3. Процедура, описанная в пунктах 1 и 2, повторяется для всех элементов ПСП, то есть последним значащим элементом последней строки этой матрицы будет bn-1 на позиции c координатами {n-1, α(2, n-1)}, то есть элемент матрицы β0 β0[n-1, α(2,n-1)] = bn-1, а остальные её элементы будут иметь нулевые значения.

Таким образом, будет сформирована матрица β0 размером n x n3max, где n3max = max[α(2, i)] – максимальный элемент в строке α(2, i).

На основе элементов этой матрицы β0 будут формироваться временные промежутки псевдослучайной длины между ненулевыми символами полученных монополярных ПСП:

Δt(i, l) = [β0(i, l) + m(i, l)]·τ0.

Здесь m(i, l) – дополнительное псевдослучайное количество временных промежутков численно равных длительности импульса τ0, образующихся вследствие особенностей способа формирования СШП сигналов.

Ниже на фиг. 4 и фиг. 5 представлены матрицы, сформированные на основе строки α(2, i) матрицы α и двух упомянутых выше ПСП с полиномиальными коэффициентами 11001 и 10011, но транспонированные () для kα = 2.

4. Осуществляется конкатенация столбцов матриц β. Программная реализация этой операции выглядит следующим образом:

C<0> = β<0>

for k = 1, 2, , n-1 (3)

C<k> = concat(C<k-1>, β<k>).

Здесь выражение Х<i> означает i-й столбец матрицы Х; concat(А, D) – функция конкатенации векторов А и D в координатном представлении.

В «разреженном» коде R = C<k> нули, стоящие перед первым ненулевым элементом и за последним ненулевым элементом, не удаляются для того, чтобы все сигналы ансамбля были одинаковой длины, что упрощает их формирование, а главное – обработку на приёмной стороне, а также предотвращает ухудшение взаимокорреляционных свойств сигналов в ансамбле. Далее для описания дискретных операций, реализуемых в микроконтроллерах и процессорах, введём следующие величины:

dl – количество элементов в коде R; Δt = τ0/M – временной дискрет,

где М – количество отсчётов на длительности импульса.

5. Формирование импульсов СШП сигнала осуществляется исполнением следующих операций:

- тактируется временное окно (Ok) для формирования в нём импульса СШП сигнала:

(4)

; (5)

где i = 0, 1,…, H-1; s = 0, 1,…, K-1; H = M·dl; K = 2dl; ti = i·Δt – дискретное время;

- в текущем временном окне формируется поток текущих импульсов заданной формы:

Si = Oki·рi. (6)

Здесь рi – функция формы импульса.

Проведённый анализ ансамблей СШП сигналов, сформированных предлагаемым способом с использованием ПСП различных объёмов на основе коэффициентов образующих их полиномов, показал, что СШП сигналы имеют хорошие как внутриансамблевые, так и межансамблевые взаимокорреляционные свойства. Наихудшие взаимокорреляционные характеристики проявляются у пар СШП сигналов из различных ансамблей, но сформированных на основе одной и той же строки матрицы α. Однако эти характеристики не могут быть хуже, чем взаимокорреляционные характеристики пар тех бинарных ПСП из одного и того же их ансамбля, на основе которых и были сформированы пары СШП сигналов с наихудшими взаимокорреляционными характеристиками. При этом чем длиннее исходные бинарные ПСП, тем быстрее улучшаются наихудшие межансамблевые взаимокорреляционные характеристики «сводного» ансамбля СШП сигналов, формируемых предлагаемым способом.

На фиг. 6 в качестве примера, подтверждающего сказанное в предыдущем абзаце, представлены СШП сигналы, сформированные описанным способом:

фиг. 6 а) - на основе строки α(3, i) и ПСП с коэффициентами образующего полинома 11001;

фиг. 6 б) - на основе строки α(3, i) и ПСП с коэффициентами образующего полинома 10011;

фиг. 6 в) - на основе строки α(1, i) и ПСП с коэффициентами образующего полинома 10011;

фиг. 6 г) - на основе строки α(2, i) и ПСП с коэффициентами образующего полинома 10011.

На фиг. 7 в укрупнённом масштабе приведён участок СШП сигнала, изображённого на фиг. 6 г) для демонстрации формы импульса.

Таким образом, выбирая ансамбль из К бинарных ПСП объёмом n символов каждая, удовлетворяющих заданным условиям, генерируя соответствующую матрицу, строки (столбцы) которой являются ППЧ, для максимизации пропускной способности канала связи или выполнения других ограничений и условий эксплуатации подбирают значение коэффициента kα и формируют «разреженный» R-код, на основе которого генерируют последовательность импульсов СШП сигнала заданной формы, длительностью . При этом объём получающегося общего ансамбля квазиортогональных СШП сигналов будет равен N = К·n, а база СШП сигнала (выигрыш обработки) примерно равна Тс0>> n. Для сравнения со способом-прототипом имеем: N = 2·15 = 30, то есть в 15 раз больше, чем даёт способ-прототип; В ≈ Тс0 = 496, то есть в 33 раза больше, чем у сигналов, формируемых способом-прототипом.

Следовательно, предлагаемый способ обеспечивает многократное увеличение объёма ансамбля квазиортогональных СШП сигналов, выигрыш обработки (базы СШП сигналов) с возможностью программного управления им, а также более эффективное использование бинарных ПСП.

Укрупнённая блок-схема устройства для реализации предлагаемого способа представлена на фиг. 8, где введены следующие обозначения:

1 – источник цифровой информации (ИЦИ);

2 – генератор бинарной ПСП (ГПСП);

3 – синхронизатор;

4 - микроконтроллер;

5 – генератор сверхкоротких импульсов (ГСКИ);

6 – генератор ППЧ (ГППЧ).

Устройство содержит последовательно соединённые источник цифровой информации (ИЦИ) 1, микроконтроллер 4 и генератор сверхкоротких импульсов (ГСКИ) 5, выход которого является выходом устройства, при этом вход ИЦИ 1 – вход устройства. Кроме того, второй выход ИЦИ 1 соединён с входом синхронизатора 3, первый выход которого соединён со вторыми входами микроконтроллера 4 и ГСКИ 5, второй выход синхронизатора 3 соединён с входами генератора ПСП 2 и генератора ППЧ 6, выход которого соединён с третьим входом микроконтроллера 4, а выход ГПСП 2 – с четвёртым входом микроконтроллера 4.

Устройство работает следующим образом. При поступлении на вход ИЦИ 1 импульса запуска с его первого выхода на первый вход микроконтроллера 4 и на вход синхронизатора 3 начнут поступать информационные символы, которые необходимо передать. Синхронизатор 3 начинает вырабатывать тактовые импульсы, которые с его первого выхода поступают на вторые входы микроконтроллера 4 и генератора СКИ 5, а со второго выхода синхронизатора 3 – на входы блока ГПСП 2 и блока ГППЧ 6, регулируя в блоках ГПСП 2, ГППЧ 6, МК 4 и ГСКИ 5 темп формирования элементов бинарной ПСП, числовых строк матрицы α и согласование текущих границ временных окон и сформированных соответствующих этим временным окнам импульсов, модулируя ими информационный импульс, который соответствует поступившему на первый вход микроконтроллера 4 информационного символа. Таким образом, в МК 4 осуществляются операции, представленные формулами (1)-(4), а в ГСКИ 5 – операции, представленные формулами (5), (6). Через промежуток времени равный длительности Тс с выхода ГСКИ 5 для проведения дальнейших операций поступит «разреженная» последовательность импульсов сформированного СШП сигнала.

Реализация устройства, осуществляющего предлагаемый способ, не вызывает затруднений, так как функциональные узлы, входящие в блоки устройства, общеизвестны как из описаний отечественных и зарубежных патентов, так и из технической литературы. Генератор ППЧ 6 может быть выполнен, например, как описано в [8], стр. 47 рис. 2.8, синхронизатор 3 там же, стр. 118, рис. 4.7, микроконтроллер – в [9].

Источники информации

1. Калинин В.О. Оценка параметров короткоимпульсной сверхширокополосной системы связи. / О.В. Калинин, В.И. Носов // Вестник СибГУТИ. – 2011, №3, с. 73 - 85.

2. Патент 2416162 (РФ). Асинхронный способ выделения закодированной информации, передаваемой потребителю с помощью сверхширокополосных импульсов. МПК H04B 7/00. Жбанов И.Л., Силаев Н.В., Митрофанов Д.Г., Сеньков М.А., Жбанова В.Л., Васильченко О.В., Гаврилов А.Д. Заявка № 2009146425/09 от 14.12.2009. Опубл. 20.06.2010 г.

3. Корниенко А.В. Алгоритмы синтеза и обработки короткоимпульсных сверхширокополосных сигналов в радиосистемах передачи информации с учётом мешающих факторов. / Автореферат диссертации на соискание учёной степени кандидата технических наук. – Рязань. – 2008. – С. 17.

4. Патент 2654566 (РФ). Способ формирования помехоустойчивых сверхширокополосных сигналов. Антипенский Р.В., Змий Б.Ф., Любавский А.П. Заявка № 2016145534 от 21.11.2016. Опубл. 21.05.2018 г.

5. Патент 157935 (РФ). Приёмопередающий модуль для обмена данными с помощью сверхширокополосных сигналов. МПК Н04В 1/38, H04L 9/00. Зайцев А.В., Митрофанов Д.Г., Тимофеев И.А., Красавцев О.О., Кичулкин Д.А., Терещенко А.А., Азаров В.С., Черников А.К., Чижов А.А. Заявка №2014147229/08 от 24.11.2014. Опубл. 20.12.2015 г.

6. Шостко, И.С. Анализ моделей сверхширокополосных сигналов для инфокоммуникационных сетей / И.С. Шостко, Таха Алмакадама, Ю.Э. Соседка // Электронное научное специализированное издание – журнал «Проблемы телекоммуникаций». – 2012. – № 4 (9), стр. 45-62.

7. Варакин, Л.Е. Системы связи с шумоподобными сигналами / Л.Е. Варакин. – М.: Радио и связь, 1985. – 384 с.

8. Тузов, Г.И. Помехозащищённость радиосистем со сложными сигналами / Г.И. Тузов, В.А. Сивов, В.И. Прытков, Ю.Ф. Урядников, Ю.А. Дергачев, А.А. Сулиманов. – М.: Радио и связь, 1985.

9. Патент 146 504 (РФ). Система связи для передачи информации с использованием сверхширокополосных хаотических сигналов. МПК H04K 1/00. Андреев Ю.В., Герасимов М. Ю., Лазарев В.А. Заявка №2013122000/07 от 14.05.2013. Опубл. 10.10.2014 г.

Похожие патенты RU2715007C1

название год авторы номер документа
СПОСОБ РАДИОСВЯЗИ С МНОЖЕСТВЕННЫМ ДОСТУПОМ 2011
  • Лукьянчиков Виктор Дмитриевич
  • Семенов Николай Николаевич
  • Ливенцев Вячеслав Васильевич
RU2445732C1
Способ формирования пар фазоманипулированных широкополосных сигналов с поляризационным кодированием с оптимальными апериодическими автокорреляционными и взаимокорреляционными функциями 2022
  • Ливенцев Вячеслав Васильевич
  • Сергиенко Александр Иванович
RU2797534C1
Способ повышения эффективности обработки сверхширокополосных короткоимпульсных сигналов на приёмной стороне 2019
  • Артемов Михаил Леонидович
  • Чаплыгин Александр Александрович
  • Лукьянчиков Виктор Дмитриевич
  • Иванов Сергей Юрьевич
  • Шатилова Анна Алексеевна
RU2731207C1
Устройство различения короткоимпульсных сверхширокополосных сигналов повышенной эффективности 2019
  • Артемов Михаил Леонидович
  • Чаплыгин Александр Александрович
  • Лукьянчиков Виктор Дмитриевич
  • Иванов Сергей Юрьевич
  • Шатилова Анна Алексеевна
RU2731126C1
СИСТЕМА РАДИОСВЯЗИ С МНОЖЕСТВЕННЫМ ДОСТУПОМ 2011
  • Лукьянчиков Виктор Дмитриевич
  • Семенов Николай Николаевич
  • Ливенцев Вячеслав Васильевич
RU2450452C1
Устройство обработки короткоимпульсных сверхширокополосных сигналов на приёмной стороне 2019
  • Артемов Михаил Леонидович
  • Чаплыгин Александр Александрович
  • Лукьянчиков Виктор Дмитриевич
  • Иванов Сергей Юрьевич
  • Шатилова Анна Алексеевна
RU2731369C1
СПОСОБ СТАБИЛИЗАЦИИ ВРЕМЕННОГО ПОЛОЖЕНИЯ СВЕРХШИРОКОПОЛОСНОГО СИГНАЛА И ЛОКАТОР ДЛЯ МОНИТОРИНГА ЖИВЫХ ОБЪЕКТОВ, РЕАЛИЗУЮЩИЙ ЭТОТ СПОСОБ 2004
  • Андриянов А.В.
  • Икрамов Г.С.
  • Курамшев С.В.
RU2258942C1
Ключевой радиопередатчик короткоимпульсных сверхширокополосных сигналов 2020
  • Артемов Михаил Леонидович
  • Чаплыгин Александр Александрович
  • Лукьянчиков Виктор Дмитриевич
  • Новоточин Сергей Александрович
  • Иванов Сергей Юрьевич
  • Шатилова Анна Алексеевна
RU2734939C1
Способ синхронизации приёмного и передающего устройств радиолинии при использовании короткоимпульсных сверхширокополосных сигналов 2019
  • Артемов Михаил Леонидович
  • Чаплыгин Александр Александрович
  • Лукьянчиков Виктор Дмитриевич
  • Иванов Сергей Юрьевич
  • Смирнова Анна Алексеевна
RU2723269C1
УСТРОЙСТВО ПЕРЕДАЧИ ДИСКРЕТНОЙ ИНФОРМАЦИИ ШУМОПОДОБНЫМИ СИГНАЛАМИ В МНОГОЛУЧЕВЫХ КАНАЛАХ С ПЕРЕМЕННЫМИ ПАРАМЕТРАМИ 2008
  • Разумов Владимир Иванович
  • Терехов Алексей Николаевич
RU2371866C1

Иллюстрации к изобретению RU 2 715 007 C1

Реферат патента 2020 года Способ формирования короткоимпульсных сверхширокополосных сигналов

Изобретение относится к области формирования короткоимпульсных сверхширокополосных сигналов и может быть использовано при разработке систем радиосвязи, радиолокации и радионавигации, использующих сложные сигналы для обеспечения повышенной помехозащищённости и энергетической скрытности функционирования. Технический результат – увеличение ансамбля квазиортогональных сверхширокополосных (СШП) сигналов, а также выигрыш обработки путём псевдослучайного «разреживания» импульсов в них за счёт использования двойной модуляции. Технический результат достигается путём формирования СШП сигналов, переносящих информационные символы, на основе совместного использования псевдослучайных числовых последовательностей и бинарных псевдослучайных последовательностей таким образом, что временные паузы между импульсами СШП сигнала пропорциональны псевдослучайным числам из соответствующей числовой последовательности с учётом того, что позиции ненулевых импульсов СШП сигналов определяются позициями соответствующих единиц в бинарной псевдослучайной последовательности. При этом псевдослучайные числовые последовательности представляют собой строки или столбцы сгенерированных одним из известных способов матриц. 22 ил., 1 табл.

Формула изобретения RU 2 715 007 C1

Способ формирования короткоимпульсных сверхширокополосных сигналов, включающий формирование биполярной бинарной псевдослучайной последовательности (ПСП) длины n a={1, -1} и замещение ее отрицательных элементов нулями b={1, 0}, отличающийся тем, что генерируют матрицу α0 размерами m × m (m ≥ n), строками которой являются квазиортогональные последовательности псевдослучайных чисел, и выделяют подматрицу α размерами n × n, в которой выбирают произвольную х-ю строку α(х, i), и построчно генерируют матрицу β0, в k-й строке которой на позиции с координатами {k, α(х, k)} будет находиться элемент ПСП bk, конкатенацией столбцов матрицы β (транспонированной матрицы ) получают «разреженный» код R, импульсами заданной формы длительностью τ0 замещают позиции ненулевых элементов этого кода, а позиции нулевых элементов этого кода замещают временными задержками такой же длительности τ0.

Документы, цитированные в отчете о поиске Патент 2020 года RU2715007C1

ШОСТКО И.С
и др
Анализ моделей сверхширокополосных сигналов для инфокоммуникационных сетей, Электронное научное специализированное издание - журнал "Проблемы телекоммуникаций", 2012, N 4 (9), стр
Железобетонный фасонный камень для кладки стен 1920
  • Кутузов И.Н.
SU45A1
СПОСОБ ФОРМИРОВАНИЯ ПОМЕХОУСТОЙЧИВЫХ ШИРОКОПОЛОСНЫХ СИГНАЛОВ 2015
  • Жиляков Евгений Георгиевич
  • Белов Сергей Павлович
  • Ушаков Дмитрий Игоревич
  • Старовойт Иван Александрович
RU2579759C1
Способ флотации титановых руд и продуктов их обогащения 1948
  • Дурново Л.Г.
  • Конторович Г.И.
  • Розов Б.И.
SU77958A1
Токарный резец 1924
  • Г. Клопшток
SU2016A1

RU 2 715 007 C1

Авторы

Чаплыгин Александр Александрович

Лукьянчиков Виктор Дмитриевич

Иванов Сергей Юрьевич

Новоточин Сергей Александрович

Костин Дмитрий Владимирович

Смирнова Анна Алексеевна

Даты

2020-02-21Публикация

2019-06-04Подача