СОСТАВ ЖИДКИХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ ДЛЯ ГАЗОВЫХ СКВАЖИН С НИЗКИМ ПЛАСТОВЫМ ДАВЛЕНИЕМ Российский патент 2020 года по МПК C09K8/536 C09K8/94 

Описание патента на изобретение RU2715281C2

Изобретение относится к газодобывающей промышленности и может применяться для выноса скопившейся капельной жидкости на забое в процессе эксплуатации или ремонта газовой скважины, эксплуатация которых осложнена наличием гидрато-ледяных пробок в стволе скважины, особенно в условиях аномально низких пластовых давлений.

Известен облегченный спиртово-солевой раствор для растепления газовых скважин в зоне многолетнемерзлых высокольдистых горных пород [RU 2560739, опубликовано 20.08.2015]. Использование известного раствора приводит к увеличению минерализации пластовой жидкости, что в последствии приведет к отложениям на внутренней стенке газопровода и технологического оборудования, что негативно повлияет на компрессорное оборудования дожимной компрессорной станции. Также известный раствор из-за повышенной кислотности (РН. больше 7) приведет к увеличению коррозионной активности предлагаемого состава, что сократит срок службы технологического оборудования и трубопроводов.

Известна смесь для удаления жидкого пластового флюида из газоконденсатных скважин с аномально низкими пластовыми давлениями [RU 2328515, опубликовано 10.07.2008]. Недостатком известного реагента, взятого за прототип, является низкая эффективность выноса жидкости из эксплуатационных газовых скважин с большим зумпфом, возможность гидратообразований при отработке скважины с твердыми поверхностно-активными веществами (ТПАВ) на факел. Низкая скорость растворения ТПАВ со скопившейся в скважине жидкостью. Известная технологическая смесь используется в виде стержней и в виде водного раствора. Недостатками в виде стержней является неработоспособность при больших зумпфах на забое скважин и малых пластовых давлениях, где режим «барботажа» минимален, так как стержни ложатся на забой, ввиду того, что плотность состава стержней значительно выше плотности воды они не производят эффективной работы по вспениванию; возможность образование гидратов при отработке скважины с ТПАВ на факел в зимнее время года; низкая скорость взаимодействия ТПАВ со скопившейся в скважине жидкостью. Недостатками в виде водного раствора: полная неработоспособность в зимнее время года, вызванное замерзанием состава; вспенивание состава при транспортировке и закачке в скважину.Задачей, на решение которой направлено предполагаемое изобретение, является разработка жидкого поверхностно - активного вещества (ЖПАВ) для работы по интенсификации добычи газа из газовых скважин месторождений поздней стадии эксплуатации (содержащих пластовую и конденсационную жидкость) в районах Крайнего Севера, в условиях низких температур, низких пластовых давлений и дебитов, а также возможности использовании ЖПАВ в скважинах с зумпфом более 10 метров.

Поставленная задача решается за счет технического результата, который заключается в достижении плотности состава ЖПАВ ниже плотности воды, что позволяет получить полезную работу по вспениванию поверхностно-активных веществ при больших зумпфах скважин. За счет жидкого агрегатного состояния ЖПАВ, в сравнении с ТПАВ, имеет больший КПД за счет менее прочных межмолекулярных связей в растворе, что обеспечивает более высокие скорости реакции пенообразования с пластовой жидкостью и тем самым сокращает время простоя скважины при ее обработке. Исключен риск выноса на устье нерастворенных элементов ПАВ. Снижен риск вспенивания закачиваемого раствора в затрубное пространство скважины, а также образования гидратов при обработке скважин ЖПАВ в зимнее время года за счет ввода в состав ПАВ ингибитора гидратообразований - метилового спирта.

Технический результат достигается тем, что состав поверхностно-активных веществ для газовых скважин, содержащий поверхностно-активное вещество ОП, Сульфанол - натриевая соль алкилбензосульфокислоты 40% водный раствор по ТУ2481-106-07510508-2005, Трилон Б, метиловый спирт масс. %:

ОП - 27,5÷37,5%;

Сульфанол 40% водный раствор - 20÷10;

Трилон Б - до 2,5%;

Водный раствор метилового спирта - остальное.

Заявляемый состав, состоящий из трех поверхностно-активных веществ (ПАВ) позволяет наблюдать синергетический эффект в виде усиления вспенивающей способности жидкости, скопившейся в скважине, при предлагаемом соотношении компонентов. За счет добавления в раствор ЖПАВ метанола удалось предотвратить замерзание ЖПАВ при отрицательных температурах в зимнее время года. Увеличив долю метанола в растворе ЖПАВ свыше 50%, удалось снизить риск гидратообразований при отработке скважины на факел с применением ЖПАВ (пенообразующая способность ЖПАВ при этом не уменьшилась). При транспортировке к скважине и закачке на забой газовой скважины ЖПАВ - входящий в состав метанол (соотношение 1:1) выполняет функцию пеногасителя и предотвращает замерзание состава при отрицательных температурах окружающей среды. При взаимодействии ЖПАВ с пластовой жидкостью, концентрация метанола кратно снижается (метанол прекращает действовать как пеногаситель), что приводит к активному взаимодействию ПАВ с жидкостью и образованию стойкой пены. Пена снижает поверхностное трение в лифте колонны скважины и увлекает за собой часть воды, как следствие снижается плотность столба водо-пенной эмульсии в стволе скважины, что способствует выносу жидкости на устье. За счет растворенного в пластовой жидкости метанола, при продувке скважины на факел исключено образование гидратообразований в факельной и технологической линиях.

Как показали опытно-промышленные испытания, при концентрации метанола в растворе ЖПАВ менее 50%, при продувке скважины на факельную линию в зимний период времени, растет перепад давления по газопроводу, что обусловлено образованием кристаллогидратов, т.е. концентрации метанола, растворенного в выносимой пластовой жидкости не достаточно, и не обеспечивается безгидратный режим работы скважины.

При концентрации метанола в растворе ЖПАВ более 50% его концентрация при закачке в скважину на условную единицу объема пластовой жидкости остается высока, метанол продолжает действовать пеногасителем поверхностно-активных веществ, что снижает эффективность пенообразования и выноса пластовой жидкости из скважины, поэтому оптимальное соотношение метанола в растворе ЖПАВ определено как 1:1.

Эффективность данного состава была подтверждена испытаниями в лабораторных условиях с применением пластовой жидкости Вынгапуровского газового промысла на стендовой установке, которая моделирует работу в режиме вспенивания ПАВ и выноса жидкости со ствола скважины. В процессе испытаний установлено, что при увеличении массовой доли ОП в растворе свыше 30%, происходит увеличение вязкости ЖПАВ и соответственно возрастает гидродинамическое сопротивление движение ЖПАВ по затрубному пространству скважины, что приводит к увеличению времени простоя скважины. При уменьшении массовой доли ОП в растворе жидких поверхностно -активных веществ ниже 27,5% происходит снижение образование пены и ее стойкости, что снижает эффективность выноса жидкости из скважины.

С целью подбора наиболее оптимального состава пенообразующей жидкости, обеспечивающей наиболее эффективное вспенивание и удаление жидкостей, накапливающихся на забое газовых скважин, были опробованы 6 образцов, отличающиеся разными концентрациями ОП- керосиновый контакт с содержанием сульфокислот не менее 55 %, нейтрализованный NaOH по ГОСТ6948-81 и 40% водного раствора сульфанола. Впоследствии, в водный раствор с каждым образцом был добавлен Трилон Б- Динатриевая соль этилендиаминтетрауксусной кислоты. ГОСТ 10652-73 Данные химические реагенты являются наиболее часто используемыми в качестве пенообразующих агентов, но при этом отличаются по своим пенообразующим свойствам: ОП (неионогенное ПАВ) является более универсальным, сульфанол (анионоактивное ПАВ) способствует образованию более стабильной пены и с большей кратностью. При этом сульфанол, при повышении общей минерализации и увеличении концентрации ионов Са и Mg, значительно теряет свои свойства пенообразователя.

Была исследована пенообразующая способность водных растворов смесей этих веществ: В таблице представлены комбинации концентраций исследуемых веществ в смеси:

Плотность смесей меняется от 1,08 г/см3 до 0,89 г/см3 в направлении образцов от №1 к №6. Вязкость увеличивается от образца №1 к образцу №6. Технологически наиболее предпочтительным является раствор с меньшей вязкостью.

Для приготовления растворов была использована проба воды, отобранная из забоя газовой скважины. Химический анализ воды на значимые параметры: общая минерализация - 3586 мг/дм3, Са2+ - 676 мг/дм3, Сl- - 1563 мг/дм3, рН - 7,8.

Было подготовлено 6 растворов по 100 мл с концентрациями образцов смесей:

Создание пены осуществлялось ручным встряхиванием емкости с раствором. Объем образовавшейся пены и ее кратность приведены в таблице:

Стабильность (суммарный объем пены и жидкости через 90 минут), объем жидкости при этом составляет приблизительно 95 мл во всех образцах:

Визуально, в момент после образования пены, дисперсность во всех образцах одинаковая, пены имеют мелкоячеистую структуру с размером ячейки порядка 1 мм. При добавлении динатриевой соли выявилось увеличение пенообразующей способности тех образцов раствора, которые содержали сульфанол. Данное обстоятельство связано с коагулирующим свойством динатриевой соли, способной связывать ионы Са, Mg, чем способствовать повышению эффективности сульфанола в смеси. Объем пены и ее кратность представлены в таблице:

Исследования показали, что наиболее оптимальный состав пенообразующей жидкости представлен в следующих концентрациях рассматриваемых компонентов, содержащий поверхностно-активное вещество ОП, Сульфанол 40% водный раствор, Трилон Б, метиловый спирт масс. %:

ОП - 27,5÷37,5%;

Сульфанол 40% водный раствор - 20÷10;

Трилон Б - до 2,5%;

Водный раствор метилового спирта - остальное.

Предлагаемый состав может использоваться в виде раствора жидких средств для удаления жидкости из газовой скважины. Для ввода раствора в газовую скважину требуется дозировочная установка. Объем предлагаемого раствора, вводимого в газовую скважину, определяют для каждой конкретной скважины отдельно, и зависит от характеристик скважины (пластового давления, объема скопившейся в скважине жидкости, минерализацией жидкости, температуры жидкости, содержания в ней газового конденсата и др.). Достижение технического результата предлагаемым изобретением (составом поверхностно-активных веществ для газовых скважин) оценивалось с помощью коэффициента выноса жидкости (рассчитывается как отношение объема вытесненной жидкости к первоначальному объему жидкости) на основании результатов, полученных по итогам стендовых испытаний предлагаемого состава и прототипа.

Коэффициент выноса жидкости газовой скважины сеноманской залежи Вынгапуровского ГП предлагаемым составом - 0,8%.

Использование предлагаемого раствора позволит увеличить добычу газа из газовых скважин. Предлагаемый состав позволит сократить эксплуатационные расходы при добыче газа и снизить количество продувок скважин.

Похожие патенты RU2715281C2

название год авторы номер документа
МНОГОЦЕЛЕВОЙ ПЕНООБРАЗОВАТЕЛЬ НА ОСНОВЕ ПАВ ДЛЯ ВСПЕНИВАНИЯ И ВЫНОСА СКВАЖИННОЙ ЖИДКОСТИ С СОДЕРЖАНИЕМ ГАЗОВОГО КОНДЕНСАТА ДО 50% И ВЫСОКОМИНЕРАЛИЗОВАННОЙ (ДО 300 Г/М) ПЛАСТОВОЙ ВОДЫ ПРИ ЭКСПЛУАТАЦИИ И ОСВОЕНИИ СКВАЖИН ПОСЛЕ РЕМОНТА И САМОПРОИЗВОЛЬНОЙ ОСТАНОВКИ 2020
  • Бельянский Виталий Евгеньевич
  • Кудояр Юрий Алексеевич
  • Текучев Эдуард Владимирович
RU2758301C1
СОСТАВ ДЛЯ ВЫНОСА ЖИДКОСТИ ИЗ ГАЗОВЫХ СКВАЖИН 2016
  • Ридель Иван Александрович
  • Медведев Михаил Вадимович
  • Онищенко Оксана Станиславовна
  • Бучельников Сергей Владимирович
  • Винник Дмитрий Владимирович
  • Урусов Юрий Александрович
RU2646991C1
РЕАГЕНТ ДЛЯ УДАЛЕНИЯ КОНДЕНСАЦИОННОЙ ЖИДКОСТИ С ПРИМЕСЬЮ ПЛАСТОВОЙ ИЗ ГАЗОВЫХ СКВАЖИН 2016
  • Арно Олег Борисович
  • Николаев Олег Александрович
  • Меркулов Анатолий Васильевич
  • Дьяконов Александр Александрович
  • Изосимов Дмитрий Игоревич
  • Кудояр Юрий Алексеевич
  • Кушнирюк Виталий Дмитриевич
  • Немков Алексей Владимирович
  • Красовский Александр Викторович
  • Бельянский Виталий Евгеньевич
RU2642680C1
РЕАГЕНТ ДЛЯ УДАЛЕНИЯ КОНДЕНСАЦИОННОЙ ЖИДКОСТИ ИЗ ГАЗОВЫХ СКВАЖИН 2016
  • Арно Олег Борисович
  • Николаев Олег Александрович
  • Меркулов Анатолий Васильевич
  • Дьяконов Александр Александрович
  • Изосимов Дмитрий Игоревич
  • Кудояр Юрий Алексеевич
  • Кушнирюк Виталий Дмитриевич
  • Немков Алексей Владимирович
  • Красовский Александр Викторович
  • Бельянский Виталий Евгеньевич
RU2657918C1
ТВЕРДЫЙ ПЕНООБРАЗУЮЩИЙ СОСТАВ ДЛЯ ВСПЕНИВАНИЯ И УДАЛЕНИЯ ИЗ НИЗКОДЕБИТНЫХ СКВАЖИН ГАЗОВЫХ МЕСТОРОЖДЕНИЙ ПЛАСТОВОЙ ЖИДКОСТИ И ПОДДЕРЖАНИЯ СТАБИЛЬНОЙ ЭКСПЛУАТАЦИИ ГАЗОВЫХ СКВАЖИН 2019
  • Захаров Андрей Александрович
  • Молодан Дмитрий Александрович
  • Мастабай Игорь Валерьевич
  • Молодан Евгений Александрович
  • Чуприна Юрий Александрович
  • Федоров Константин Юрьевич
  • Левенко Анастасия Васильевна
  • Иваненко Александр Владимирович
  • Барботько Ольга Викторовна
  • Кривда Ярослав Александрович
RU2726698C1
СПОСОБ ЭКСПЛУАТАЦИИ САМОЗАДАВЛИВАЮЩЕЙСЯ ГАЗОВОЙ СКВАЖИНЫ 2016
  • Антонов Максим Дмитриевич
  • Паникаровский Евгений Валентинович
  • Немков Алексей Владимирович
  • Саранчин Максим Владимирович
RU2651688C2
СПОСОБ БУРЕНИЯ СКВАЖИН НА САМОРАЗРУШАЮЩЕЙСЯ ПЕНЕ ПО ЗАМКНУТОМУ ЦИРКУЛЯЦИОННОМУ ЦИКЛУ, УСТАНОВКА И КОМПОЗИЦИЯ САМОРАЗРУШАЮЩЕЙСЯ ПЕНЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Заливин Владимир Григорьевич
  • Буглов Николай Александрович
RU2498036C1
Способ заканчивания скважины 1985
  • Шмельков Валентин Евгеньевич
  • Коваленко Валентин Федорович
  • Осипов Анатолий Васильевич
SU1418468A1
Способ удаления жидкости с забоя газовых скважин 1989
  • Морозов Олег Андреевич
  • Баева Людмила Михайловна
  • Шеин Юрий Валентинович
  • Мезенцева Галина Анатольевна
SU1710705A1
СПОСОБ ПОДЪЕМА ЖИДКОСТИ С ЗАБОЯ ГАЗОКОНДЕНСАТНЫХ СКВАЖИН С НИЗКИМ ГАЗОВЫМ ФАКТОРОМ В УСЛОВИЯХ АНОМАЛЬНО НИЗКИХ ПЛАСТОВЫХ ДАВЛЕНИЙ 2007
  • Баканов Юрий Иванович
  • Захаров Андрей Александрович
  • Гераськин Вадим Георгиевич
  • Никитин Михаил Михайлович
  • Жиденко Виктор Петрович
  • Захаров Сергей Александрович
  • Федоров Константин Юрьевич
  • Бунчуков Сергей Михайлович
  • Малхасьян Сергей Сергеевич
RU2363836C2

Реферат патента 2020 года СОСТАВ ЖИДКИХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ ДЛЯ ГАЗОВЫХ СКВАЖИН С НИЗКИМ ПЛАСТОВЫМ ДАВЛЕНИЕМ

Изобретение относится к газодобывающей промышленности и может применяться для выноса скопившейся капельной жидкости на забое в процессе эксплуатации или ремонта газовой скважины, эксплуатация которых осложнена наличием гидрато-ледяных пробок в стволе скважины, особенно в условиях аномально низких пластовых давлений. Состав поверхностно-активных веществ для газовых скважин, содержащий, мас.%: поверхностно-активное вещество ОП, Сульфанол 40% водный раствор, Трилон Б, метиловый спирт, мас. %: ОП 27,5÷37,5%; Сульфанол 40% водный раствор 20÷10; Трилон Б до 2,5%; Водный раствор метилового спирта остальное. Использование предлагаемого раствора позволит увеличить добычу газа из газовых скважин, а также сократить эксплуатационные расходы при добыче газа и снизить количество продувок скважин. 5 табл.

Формула изобретения RU 2 715 281 C2

Состав жидких поверхностно-активных веществ для газовых скважин с низким пластовым давлением, содержащий поверхностно-активное вещество ОП, Сульфанол 40% водный раствор, Трилон Б, метиловый спирт, при следующем соотношении компонентов, мас. %:

ОП 27,5÷37,5 Сульфанол 40% водный раствор 20÷10 Трилон Б до 2,5 Водный раствор метилового спирта остальное

Документы, цитированные в отчете о поиске Патент 2020 года RU2715281C2

ТЕХНОЛОГИЧЕСКАЯ СМЕСЬ ДЛЯ УДАЛЕНИЯ ЖИДКОГО ПЛАСТОВОГО ФЛЮИДА ИЗ ГАЗОКОНДЕНСАТНЫХ СКВАЖИН С АНОМАЛЬНО НИЗКИМИ ПЛАСТОВЫМИ ДАВЛЕНИЯМИ 2005
  • Баканов Юрий Иванович
  • Колесниченко Владимир Петрович
  • Гераськин Вадим Георгиевич
  • Захаров Андрей Александрович
  • Никитин Михаил Михайлович
  • Жиденко Виктор Петрович
  • Федоров Константин Юрьевич
  • Бунчуков Сергей Михайлович
  • Малхасьян Сергей Сергеевич
  • Криворучко Павел Евгеньевич
  • Мануйлов Александр Николаевич
  • Нечаев Александр Анатольевич
  • Кобелева Надежда Ивановна
RU2328515C2
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ СЛАБОЦЕМЕНТИРОВАННОГО ТЕРРИГЕННОГО ПЛАСТА В УСЛОВИЯХ АНОМАЛЬНО НИЗКОГО ПЛАСТОВОГО ДАВЛЕНИЯ 2013
  • Кустышев Александр Васильевич
  • Сингуров Александр Александрович
  • Паникаровский Евгений Валентинович
  • Кустышев Денис Александрович
  • Джанагаев Вадим Славикович
  • Попова Жанна Сергеевна
RU2528803C1
US 5355958 A1, 18.10.1994
US 5034140 A1, 23.07.1991.

RU 2 715 281 C2

Авторы

Медведев Михаил Вадимович

Ожерельев Дмитрий Александрович

Манихин Олег Юрьевич

Винник Дмитрий Владимирович

Бутенко Семен Олегович

Даты

2020-02-26Публикация

2017-12-15Подача